Advertisement

Methoden voor het vaststellen van de lichaamssamenstelling

  • M. Visser
Chapter
  • 2.5k Downloads

Samenvatting

De lichaamssamenstelling bestaat uit twee hoofdcomponenten: de vetmassa en de vetvrije massa. Spiermassa is de belangrijkste component van de vetvrije massa. Er zijn diverse methoden beschikbaar voor het meten van de lichaamssamenstelling. Die methoden variëren sterk in prijs, benodigde apparatuur, belasting voor de persoon en nauwkeurigheid. Het viercomponentenmodel wordt algemeen beschouwd als de gouden standaard, hoewel de DXA-methode, CT en MRI ook vaak geaccepteerd worden. Deze laatste drie methoden kunnen ook de spiermassa nauwkeurig meten. Bijna alle methoden zijn ontwikkeld en gevalideerd voor jonge volwassenen. Voorzichtigheid is geboden bij het toepassen van de methoden voor het meten van de lichaamssamenstelling bij kinderen, ouderen, obesen en patiënten. Op individueel niveau kunnen de meetfouten groot zijn, wat het meten van kleine veranderingen in de lichaamssamenstelling van één persoon bemoeilijkt. Om de meting van de lichaamssamenstelling te vereenvoudigen zijn verschillende voorspellingsformules op basis van simpele metingen ontwikkeld. Een zorgvuldige keuze uit de beschikbare voorspellingsformules is noodzakelijk. De keuze voor een bepaalde meetmethode hangt uiteindelijk af van de specifieke eigenschappen van de methode die de arts/diëtist/onderzoeker van belang acht.

Referenties

  1. Baumgartner RN, Heymsfield SB, Lichtman S, e.a. Body composition in elderly people: effect of criterion estimates on predictive equations. Am J Clin Nutr 1991; 53: 1345–53.PubMedGoogle Scholar
  2. Behnke AR, Feen BG, Welham WC. Specific gravity of healthy man. JAMA 1942; 118: 495–8.CrossRefGoogle Scholar
  3. Böhm A, Heitmann BL. The use of bioelectrical impedance analysis for body composition in epidemiological studies. Eur J Clin Nutr 2013; 67: S79–85.CrossRefPubMedGoogle Scholar
  4. Brozek J, Grande F, Anderson JT, Keys A. Densitometric analysis of body composition: revision of some quantitative assumptions. Ann NY Acad Sci 1963; 110: 113–40.CrossRefPubMedGoogle Scholar
  5. Dempster P, Aitkens S. A new air displacement method for the determination of human body composition. Med Sci Sports Med 1995; 27: 1692–7.Google Scholar
  6. Deurenberg P, Kooy K van der, Evers P, Hulshof T. Assessment of body composition by bioelectrical impedance in a population aged greater than 60 y. Am J Clin Nutr 1990; 51: 3–6.PubMedGoogle Scholar
  7. Deurenberg P, Kooy K van der, Leenen R, e.a.. Sex and age specific prediction formulas for estimating body composition from bioelectrical impedance: a cross-validation study. Int J Obes 1991a; 15: 17–25.PubMedGoogle Scholar
  8. Deurenberg P, Weststrate JA, Seidell JC. Body mass index as a measure of body fatness: age- and sex-specific prediction formulas. Br J Nutr 1991b; 65: 105–14.CrossRefPubMedGoogle Scholar
  9. Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr 1974; 32: 77–97.CrossRefPubMedGoogle Scholar
  10. Ellis KJ. Human body composition: in vivo methods. Physiol Rev 2000; 80: 649–80.PubMedGoogle Scholar
  11. Fields DA, Goran MI, McCrory MA. Body-composition assessment via air-displacement plethysmography in adults and children: a review. Am J Clin Nutr 2002; 75: 453–67.PubMedGoogle Scholar
  12. Fuller NJ, Laskey MA, Elia M. Assessment of the composition of major body regions by dual-energy X-ray absorptiometry (dexa), with special reference to limb muscle mass. Clin Physiol 1992; 12: 253–66.CrossRefPubMedGoogle Scholar
  13. Gallagher D, Visser M, Sepulveda D, e.a. How useful is the body mass index for comparison of body fatness across age, sex, and ethnic groups? Am J Epidemiol 1996; 143: 228–39.CrossRefPubMedGoogle Scholar
  14. Golan R, Shelef I, Rudich A, e.a.. Abdominal superficial subcutaneous fat - a putative distinct protective fat subdepot in type 2 diabetes. Diab Care 2012; 35: 640–7.Google Scholar
  15. Goodpaster BH, Kelley DE, Thaete FL, e.a.. Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol 2000; 89: 104–10.PubMedGoogle Scholar
  16. Heiat A, Vaccarino V, Krumholz HM. An evidence-based assessment of federal guidelines for overweight and obesity as they apply to elderly persons. Arch Intern Med 2001; 161: 1194–203.CrossRefPubMedGoogle Scholar
  17. Heim N, Snijder MB, Heymans MW, e.a. Optimal cutoff values for high-risk waist circumference in older adults based on related health outcomes. Am J Epidemiol 2011; 174: 479–89.CrossRefPubMedGoogle Scholar
  18. Heymsfield SB, Smith R, Aulet M, e.a. Appendicular skeletal muscle mass: measurement by dual-photon absorptiometry. Am J Clin Nutr 1990; 52: 214–8.PubMedGoogle Scholar
  19. Heymsfield SB, Wang ZM, Withers RT. Multicomponent molecular levels of body composition analysis. In: A.F. Roche, S.B. Heymsfield en T.G. Lohman (red.), Human body composition. Champaign, IL: Human Kinetics, 1996.Google Scholar
  20. Hollander EL de, Wanda JE, Bemelmans WJE, e.a. The association between waist circumference and risk of mortality considering body mass index in 65-74 year olds: a meta-analysis of 29 cohorts involving more than 58000 elderly. Int J Epidemiol 2012; 41: 805–17.CrossRefPubMedGoogle Scholar
  21. Jaffrin MY. Body composition determination by bioimpedance: an update. Curr Opin Clin Nutr Metab Care 2009; 12: 482–6.CrossRefPubMedGoogle Scholar
  22. Janssen I, Heymsfield SB, Baumgartner RN, e.a.. Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol 2000; 89: 465–71.PubMedGoogle Scholar
  23. Janssen I. Morbidity and mortality risk associated with an overweight BMI in older men and women. Obesity 2007; 15: 1827–40.CrossRefPubMedGoogle Scholar
  24. Jebb SA. Measurement of soft tissue composition by dual energy X-ray absorptiometry. Br J Nutr 1997; 77; 151–63.CrossRefPubMedGoogle Scholar
  25. Kim M, Kim H. Accuracy if segmental multi-frequency bioelectrical impedance analyses for assessing whole-body and appendicular fat mass and lean soft tissue mass in frail women aged 75 years and older. Eur J Clin Nutr 2013; 67: 395–400.CrossRefPubMedGoogle Scholar
  26. Kist-van Holthe JE Beltman M e.a. JGZ Richtlijn Preventie signalering, interventie en verwijzing van kinderen van 0-19 jaar. Utrecht: Nederlands Centrum Jeugdgezondheid (NCJ), 2012.Google Scholar
  27. Kohrt WM. Body composition by DXA: tried and true? Med Sci Sports Exerc 1995; 27; 1349–53.CrossRefPubMedGoogle Scholar
  28. Kushner RF. Bioelectrical impedance analysis: a review of principles and applications. J Am Coll Nutr 1992; 11: 199–209.PubMedGoogle Scholar
  29. Kushner RF, Schoeller DA, Fjeld CR, Danford L. Is the impedance index (ht2/R) significant in predicting total body water? Am J Clin Nutr 1992; 56: 835–9.PubMedGoogle Scholar
  30. Kyle UG, Genton L, Karsegard L, ea. Single prediction equation for bioelectrical impedance analysis in adults aged 20-94 years. Nutrition 2001; 17: 248–53.Google Scholar
  31. Kyle UG, Genton L, Hans D, e.a. Validation of a bioelectrical impedance analysis equation to predict appendicular skeletal muscle mass (ASMM). Clin Nutr 2003; 22: 537–43.CrossRefPubMedGoogle Scholar
  32. Ling CHY, Craen AJM de, Slagboom PE, e.a. Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adults population. Clin Nutr 2011; 30: 610–5.CrossRefPubMedGoogle Scholar
  33. Lohman TG., Roche AF, Martorell R (red.). Anthropometric standardization reference manual. Champaign, IL: Human Kinetics Books, 1988.Google Scholar
  34. Lukaski HC, Mendez J, Buskirk ER, Cohn SH. Relationship between endogenous 3-methylhistidine excretion and body composition. Am J Physiol 1981; 240: E302–7.PubMedGoogle Scholar
  35. McCrory MA, Gomez TD, Bernauer EM, Mole PA. Evaluation of a new air displacement plethysmograph for measuring human body composition. Med Sci Sports Exerc 1995; 27: 1686–91.CrossRefPubMedGoogle Scholar
  36. McCrory MA, Mole PA, Gomez TD, e.a.. Body composition by air-displacement plethysmography by using predicted and measured thoracic gas volumes. J Appl Physiol 1998; 84: 1475–9.PubMedGoogle Scholar
  37. National Institutes of Health Consensus statement. Bioelectrical impedance analysis in body composition measurement. NIH Technology Assessment Statement. Nutrition 1996; 12: 749–62.CrossRefGoogle Scholar
  38. Organ LW, Bradham GB, Gore DT, Lozier SL. Segmental bioelectrical impedance analysis: theory and application of a new technique. J Appl Physiol 1994; 77: 98–112.PubMedGoogle Scholar
  39. Pace N, Rathbun EN. Studies on body composition: body water and chemically combined nitrogen content in relation to fat content. J Biol Chem 1945; 158: 685–91.Google Scholar
  40. Partnerschap Overgewicht Nederland (PON). Addendum voor kinderen bij de CBO-richtlijn ‘Diagnostiek en behandeling van obesitas bij volwassenen en kinderen’. 2011. www.partnerschapovergewicht.nl.
  41. Pietrobelli A, Formica C, Wang Z, Heymsfield SB. Dual-energy X-ray absorptiometry body composition model: review of physical concepts. Am J Physiol 1996; 271: E941–51.PubMedGoogle Scholar
  42. Reeves SL, Varakamin C, Henry CJ. The relationship between arm-span measurement and height with special reference to gender and ethnicity. Eur J Clin Nutr 1996; 50: 398–400.PubMedGoogle Scholar
  43. Roche AF, Heymsfield SB, Lohman TG (red.). Human body composition. Champaign, IL: Human Kinetics, 1996.Google Scholar
  44. Ross R, Pedwell H, Rissanen J. Response of total and regional lean tissue and skeletal muscle to a program of energy restriction and resistance exercise. Int J Obes Relat Metab Disord 1995; 19: 781–7.PubMedGoogle Scholar
  45. Roubenoff R, Kehayias JJ, Dawson-Hughes B, Heymsfield SB. Use of dual-energy X-ray absorptiometry in body-composition studies: not yet a ‘gold standard’. Am J Clin Nutr 1993; 58: 589–91.PubMedGoogle Scholar
  46. Segal KR, Van Loan M, Fitzgerald PI, Hodgdon JA, Itallie TB van. Lean body mass estimation by bioelectrical impedance analysis: a four-site cross-validation study. Am J Clin Nutr 1988; 47: 7–14.PubMedGoogle Scholar
  47. Seidell JC, Beer JJA de, Kuijpers T. CBO-richtlijn diagnostiek en behandeling van obesitas bij volwassenen en kinderen. Ned Tijdschr Geneesk 2008; 152: 2071–6.Google Scholar
  48. Selinger A. The body as a three component system. Dissertatie. Urbana: University of Illinois, 1977.Google Scholar
  49. Silva AM, Fields DA, Sardinha LB. A PRISMA-driven systematic review of predictive equations for assessing fat and fat-free mass in healthy children and adolescents using multicomponent molecular models as the reference method. J Obes 2013; 2013: 148696.Google Scholar
  50. Siri WE. Body composition from fluid spaces and density, analysis of methods. In: J. Brozek, A. Henschel (red.), Techniques for measuring body composition. Washington, DC: National Academy Press, 1961.Google Scholar
  51. Slaughter MH, Lohman TG, Boileau e.a. Skinfold equations for estimations of body fatness in children and youth. Human Biology 1988; 60: 709–23.PubMedGoogle Scholar
  52. Snyder WS, Cook MJ, Nasset ES, e.a. Report of the task group on reference man. Oxford: Pergamon Press, 1984.Google Scholar
  53. Song MY, Ruts E, Kim J, e.a.. Sarcopenia and increased adipose tissue infiltration of muscle in elderly African American women. Am J Clin Nutr 2004; 79: 874–80.PubMedGoogle Scholar
  54. Sun SS, Chumlea WC, Heymsfield SN, e.a.. Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiological surveys. Am J Clin Nutr 2003; 77: 331–40.PubMedGoogle Scholar
  55. Talma H, Chinapaw MJM, Bakker B, ea. Bioelectrical impedance analysis to estimate body composition in children and adolescents: a systematic review and evidence appraisal of validity, responsiveness, reliability and measurement error. Obes Rev 2013; 14: 895–905.Google Scholar
  56. Tengvall M, Ellegård L, Malmros V, e.a. Body composition in the elderly: reference values and bioelectrical impedance spectroscopy to predict total body skeletal muscle mass. Clin Nutr 2009; 28: 52–8.CrossRefPubMedGoogle Scholar
  57. Visser M, Heuvel E van den, Deurenberg P. Prediction equations for the estimation of body composition in the elderly using anthropometric data. Br J Nutr 1994; 71: 823–33.CrossRefPubMedGoogle Scholar
  58. Visser M, Gallagher D, Deurenberg P, e.a. Density of fat-free body mass: relationship with race, age, and level of body fatness. Am J Physiol 1997; 272: E781–E787.PubMedGoogle Scholar
  59. Visser M, Fuerst T, Salamone L, Lang T, Harris TB. Validity of fan beam dual-energy X-ray absorptiometry for measuring fat-free mass and leg muscle mass. J Appl Physiol 1999; 87: 1513–20.PubMedGoogle Scholar
  60. Visser M, Deeg DJH. The effect of age-related height loss on the BMI classification of older men and women. Int J Body Comp Res 2007; 5: 35–40.Google Scholar
  61. Visser M. Towards a definition of sarcopenia – results from epidemiological studies. J Nutr Health Aging 2009; 13: 713–6.CrossRefPubMedGoogle Scholar
  62. Wang Z, Deurenberg P, Guo SS, Pietrobelli A, Wang J, Pierson RN, Heymsfield SB. Six-compartment body composition model: inter-method comparisons of total body fat measurement. Int J Obes 1998a; 22: 329–37.CrossRefGoogle Scholar
  63. Wang Z, Deurenberg P, Matthews DE, Heymsfield SB. Urinairy 3-methylhistidine excretion: association with total body skeletal muscle mass by computerized axial tomography. J Parenter Enteral Nutr 1998b; 22: 82–6.Google Scholar
  64. Ward LC. Segmental bioelectrical impedance analysis: an update. Curr Opin Clin Nutr Metab Care 2012; 15: 424–9.CrossRefPubMedGoogle Scholar
  65. Welle S, Thornton C, Totterman S, Forbes G. Utility of creatinine excretion in body-composition studies of healthy men and women older than 60 y. Am J Clin Nutr 1996; 63: 151–6.PubMedGoogle Scholar
  66. Weststrate JA, Deurenberg P. Body composition in children: proposal for a method for calculating body fat percentage from total body density or skinfold-thichness measurements. Am J Clin Nutr 1989; 50: 1104–15.PubMedGoogle Scholar
  67. Wijnhoven HA, Schilp J, van Bokhorst-de van der Schueren MA, e.a. Development and validation of criteria for determining undernutrition in community-dwelling older men and women: The Short Nutritional Assessment Questionnaire 65+. Clin Nutr 2012; 31: 351–8.CrossRefPubMedGoogle Scholar
  68. Wijnhoven HA, Boer MR de, Visser M. Reproducibility of measurements of mid-upper arm circumference in older persons. J Hum Nutr Diet 2013; 26: 24–31.CrossRefPubMedGoogle Scholar
  69. World Health Organization and UNICEF. WHO child growth standards and the identification of severe acute malnutrition in infants and children. WHO: Geneva, 2009.Google Scholar

Copyright information

© Bohn Stafleu van Loghum 2015

Authors and Affiliations

  • M. Visser
    • 1
    • 2
  1. 1.afdeling Gezondheidswetenschappen, Faculteit der Aard- en LevenswetenschappenVrije UniversiteitAmsterdamThe Netherlands
  2. 2.Voedingswetenschappen, Interne Geneeskunde, VU medisch centrumAmsterdamThe Netherlands

Personalised recommendations