Skip to main content

Combinatorics of Poincaré’s and Schröder’s equations

  • Conference paper
Resurgence, Physics and Numbers

Part of the book series: CRM Series ((CRMSNS,volume 20))

  • 618 Accesses

Abstract

We investigate the combinatorial properties of the functional equation ϕ[h(z)] = h(qz) for the conjugation of a formal diffeomorphism ϕ of ℂ to its linear part zqz. This is done by interpreting the functional equation in terms of symmetric functions, and then lifting it to noncommutative symmetric functions. We describe explicitly the expansion of the solution in terms of plane trees and prove that its expression on the ribbon basis has coefficients in ℕ[q] after clearing the denominators (q) n . We show that the conjugacy equation can be lifted to a quadratic fixed point equation in the free triduplicial algebra on one generator. This can be regarded as a q-deformation of the duplicial interpretation of the noncommutative Lagrange inversion formula. Finally these calculations are interpreted in terms of the group of the operad of Stasheff polytopes, and are related to Ecalle’s arborified expansion by means of morphisms between various Hopf algebras of trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Björner and M. Wachs, q-Hook length formulas for forests, J. Combin. Theory Ser. A 52 (1989), 165–187.

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Brouder, A. Frabetti and C. Krattenthaler, Noncommutative Hopf algebra of formal diffeomorphisms, QA/0406117, 2004-arxiv.org

    Google Scholar 

  3. E. Burgunder and R. Holtkamp, Partial magmatic bialgebras, Homology, Homotopy Appl. 10 (2008), no. 2, 59–81.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. C. Butcher, “Numerical Methods for Ordinary Differential Equations”, (2nd ed.), John Wiley & Sons Ltd. (2008), ISBN 978-0-470-72335-7.

    Google Scholar 

  5. F. Chapoton, Operads and algebraic combinatorics of trees, Sém. Lothar. Combin. 58 (2007/08).

    Google Scholar 

  6. A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, In: “Quantum Field Theory: Perspective and Prospective” (Les Houches, 1998), Vol. 530 of NATO Sci. Ser. C Math. Phys. Sci., Kluwer Acad. Publ., Dordrecht, 1999, 59–108.

    Google Scholar 

  7. T. L. Curtright and C. K. Zachos, Evolution profiles and functional equations, J. Phys. A 42 (2009), 485208.

    Article  MathSciNet  MATH  Google Scholar 

  8. T. L. Curtright and C. K. Zachos, Chaotic maps, Hamiltonian flows, and holographic methods, J. Phys A 43 (2010), 445101, 15pp.

    Article  MathSciNet  MATH  Google Scholar 

  9. T. L. Curtright, X. Jin and C. K. Zachos, Approximate solutions of functional equations, preprint (2011), arXiv:1105.3664.

    Google Scholar 

  10. T. L. Curtright and A. Veitia, Logistic map potentials, preprint (2010), arXiv:1005.5030.

    Google Scholar 

  11. G. Duchamp, F. Hivert and J.-Y. Thibon, Noncommutative symmetric functions VI: free quasi-symmetric functions and related algebras, Internat. J. Alg. Comput. 12 (2002), 671–717.

    Article  MathSciNet  MATH  Google Scholar 

  12. K. Ebrahimi-Fard and D. Manchon, On an extension of Knuth’s rotation correspondence to reduced planar trees, J. Non-commut. Geom. 8 (2014), 303–320.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Écalle, Singularités non abordables par la géométrie, Ann. Inst. Fourier (Grenoble) 42 (1992), 73–164.

    Article  MathSciNet  MATH  Google Scholar 

  14. F. Fauvet and F. Menous, Ecalle’s arborification-coarborification transforms and Connes-Kreimer Hopf algebra, Ann. Sci. Ecole Normale Sup. 50 (2017), 35–83.

    MathSciNet  MATH  Google Scholar 

  15. L. Foissy Les algèbres de Hopf des arbres enracinés décorés. I, Bull. Sci. Math., 126 (2002), 193–239.

    Article  MathSciNet  MATH  Google Scholar 

  16. L. Foissy, Les algèbres de Hopf des arbres enracinés dé corés. II, Bull. Sci. Math., 126 (2002), 249–288.

    Article  MathSciNet  MATH  Google Scholar 

  17. I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. S. Retakh, and J.-Y. Thibon, Noncommutative symmetric functions, Adv. in Math. 112 (1995), 218–348.

    Article  MathSciNet  MATH  Google Scholar 

  18. I. Gessel, Noncommutative Generalization and q-analog of the Lagrange Inversion Formula, Trans. Amer. Math. Soc. 257 (1980), no. 2, 455–482.

    MathSciNet  MATH  Google Scholar 

  19. R. Grossman and R. G. Larson, Hopf-algebraic structure of families of trees, J. Algebra 126 (1989), 184–210.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Grossman and R. G. Larson, Hopf-algebraic structure of combinatorial objects and differential operators, Israel J. Math. 72 (1990), 109–117.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Haiman, Conjectures on the quotient ring by diagonal invariants, J. Algebraic Combin. 3 (1994), 17–36.

    Article  MathSciNet  MATH  Google Scholar 

  22. F. Hivert, Hecke algebras, difference operators, and quasi-symmetric functions, Adv. Math. 155 (2000), 181–238.

    Article  MathSciNet  MATH  Google Scholar 

  23. F. Hivert, J.-C. Novelli and J.-Y. Thibon, Trees, functional equations and combinatorial Hopf algebras, Europ. J. Combin. 29 (2008), 1682–1695.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Holtkamp, On Hopf algebra structures over free operads, Adv. Math. 207 (2006), 544–565.

    Article  MathSciNet  MATH  Google Scholar 

  25. S. A. Joni and G.-C. Rota, Coalgebras and bialgebras in combinatorics, Contemp. Math. 6 (1982), 1–47.

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Koenigs, Recherches sur les intégrales de certaines équations fonctionelles, Ann. Sci. Ecole Norm. Sup. 1 (1884) supplém., 1–14.

    MathSciNet  MATH  Google Scholar 

  27. D. Krob, B. Leclerc and J.-Y. Thibon, Noncommutative symmetric functions II: Transformations of alphabets, Intern. J. Alg. Comput. 7 (1997), 181–264.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Lascoux, “Symmetric Functions and Combinatorial Operators on Polynomials”, CBMS Regional Conference Series in Mathematics, Vol. 99, American Math. Soc., Providence, RI, 2003.

    MATH  Google Scholar 

  29. C. Lenart, Lagrange inversion and Schur functions, J. Algebraic Combin. 11 (2000), 69–78.

    Article  MathSciNet  MATH  Google Scholar 

  30. J.-L. Loday, The diagonal of the Stasheff polytope, In: “Higher Structures in Geometry and Physics”, Vol. 287 of Progr. Math., Birkhäuser/Springer, New York, 2011, 269–292.

    Chapter  Google Scholar 

  31. I.G. Macdonald, “Symmetric Functions and Hall Polynomials”, 2nd ed., Oxford University Press, 1995.

    Google Scholar 

  32. F. Menous, Formulas for the Connes-Moscovici Hopf algebra, In: Combinatorics and Physics”, Vol. 539 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2011, 269–285.

    Chapter  Google Scholar 

  33. F. Menous, An example of local analytic q-difference equation: analytic classification, Ann. Fac. Sci. Toulouse Math. (6) 15 (2006), 773–814.

    Article  MathSciNet  MATH  Google Scholar 

  34. F. Menous, On the stability of some groups of formal diffeomorphisms by the Birkhoff decomposition. Adv. Math. 216 (2007), 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  35. J.-C Novelli and J.-Y. Thibon, “A Hopf Algebra of Parking Functions”, Proc. FPSAC/SFCA 2004, Vancouver (electronic).

    Google Scholar 

  36. J.-C Novelli and J.-Y. Thibon, Noncommutative symmetric functions and Lagrange inversion, Adv. Appl. Math. 40 (2008), 8–35.

    Article  MathSciNet  MATH  Google Scholar 

  37. F. Panaite, Relating the Connes-Kreimer and Grossman-Larson Hopf algebras built on rooted trees, Lett. Math. Phys. 51 (2000), 211–219.

    Article  MathSciNet  MATH  Google Scholar 

  38. E. Schröder, Vier combinatorische Probleme, Zeitschrift für Angewandte Mathematik und Physik 15 (1870), 361–376.

    MATH  Google Scholar 

  39. E. Schröder, Uber iterierte Funktionen, Math. Ann. 3 (1871), 296–322.

    Article  Google Scholar 

  40. C. L. Siegel, Iteration of analytic functions, Ann. of Math. Second Series 43 (1942), 607–612.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Frédéric Fauvet Dominique Manchon Stefano Marmi David Sauzin

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Scuola Normale Superiore Pisa

About this paper

Cite this paper

Menous, F., Novelli, JC., Thibon, JY. (2017). Combinatorics of Poincaré’s and Schröder’s equations. In: Fauvet, F., Manchon, D., Marmi, S., Sauzin, D. (eds) Resurgence, Physics and Numbers. CRM Series, vol 20. Edizioni della Normale, Pisa. https://doi.org/10.1007/978-88-7642-613-1_8

Download citation

Publish with us

Policies and ethics