Skip to main content

Feynman diagrams and their algebraic lattices

  • Conference paper
Resurgence, Physics and Numbers

Part of the book series: CRM Series ((CRMSNS,volume 20))

  • 635 Accesses

Abstract

We present the lattice structure of Feynman diagram renormalization in physical QFTs from the viewpoint of Dyson-Schwinger-Equations and the core Hopf algebra of Feynman diagrams. The lattice structure encapsules the nestedness of diagrams. This structure can be used to give explicit expressions for the counterterms in zero-dimensional QFTs using the lattice-Moebius function. Different applications for the tadpole-free quotient, in which all appearing elements correspond to semimodular lattices, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Berghoff, Wonderful compactifications in quantum field theory, Commun. Num. Theor. Phys. 09 (2015), 477–547.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Bloch, “Motives Associated to Graphs”, Takagi Lectures, Kyoto, November, 2006.

    Google Scholar 

  3. S. Bloch, H. Esnault and D. Kreimer, On Motives associated to graph polynomials, Commun. Math. Phys. 267 (2006), 181–225.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Bloch and D. Kreimer, Feynman amplitudes and Landau singularities for 1-loop graphs, Commun. Num. Theor. Phys. 4 (2010), 709–753.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Bloch and D. Kreimer, “Cutkosky Rules and Outer Space”, 2015.

    Google Scholar 

  6. M. Borinsky, Algebraic lattices in qft renormalization, Letters in Mathematical Physics 106 (2016), 879–911.

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Brown, “Lectures on Renormalization”, Bingen Spring School, 2013.

    Google Scholar 

  8. F. Brown and D. Kreimer, Angles, scales and parametric renormalization, Lett. Math. Phys. 103 (2013), 933–1007.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem i: The Hopf algebra structure of graphs and the main theorem, Communications in Mathematical Physics 210 (2000), 249–273.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Figueroa and José M Gracia-Bondia, Combinatorial Hopf algebras in quantum field theory i, Reviews in Mathematical Physics, 17(08): 881–976, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Foissy, Mulitgraded Dyson-Schwinger systems, 2015.

    Google Scholar 

  12. J. Kock, Polynomial functors and combinatorial Dyson-Schwinger equations, 2015.

    Google Scholar 

  13. D. Kreimer, The core Hopf algebra, Clay Math. Proc. 11 (2010), 313–322.

    MathSciNet  MATH  Google Scholar 

  14. D. Kreimer, Quantum fields, periods and algebraic geometry, Contemporary Mathematics (2015), 648.

    Google Scholar 

  15. D. Kreimer and W. D. Van Suijlekom, Recursive relations in the core Hopf algebra, Nucl. Phys. B 820 (2009), 682–693.

    Article  MathSciNet  MATH  Google Scholar 

  16. O. Krueger and D. Kreimer, Filtrations in Dyson-Schwinger equations: Next-toj-leading log expansions systematically, Annals Phys. 360 (2015), 293–340.

    Article  MATH  Google Scholar 

  17. D. Manchon, Hopf algebras, from basics to applications to renormalization, arXiv preprint math/0408405, 2004.

    Google Scholar 

  18. W. R. Schmitt, Incidence hopf algebras Journal of Pure and Applied Algebra 96(3) (1994), 299–330.

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Van Baalen, D. Kreimer, D. Uminsky and K. Yeats, The QED beta-function from global solutions to Dyson-Schwinger equations, Annals Phys. 324 (2009), 205–219.

    Article  MATH  Google Scholar 

  20. G. Van Baalen, D. Kreimer, D. Uminsky and K. Yeats, The QCD beta-function from global solutions to Dyson-Schwinger equations, Annals Phys. 325 (2010), 300–324.

    Article  MATH  Google Scholar 

  21. S. Weinberg, High-energy behavior in quantum field theory, Phys. Rev. 118 (1960), 838–849.

    Article  MathSciNet  MATH  Google Scholar 

  22. K. A. Yeats, “Growth Estimates for Dyson-Schwinger Equations”, PhD thesis, 2008.

    Google Scholar 

Download references

Authors

Editor information

Frédéric Fauvet Dominique Manchon Stefano Marmi David Sauzin

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Scuola Normale Superiore Pisa

About this paper

Cite this paper

Borinsky, M., Kreimer, D. (2017). Feynman diagrams and their algebraic lattices. In: Fauvet, F., Manchon, D., Marmi, S., Sauzin, D. (eds) Resurgence, Physics and Numbers. CRM Series, vol 20. Edizioni della Normale, Pisa. https://doi.org/10.1007/978-88-7642-613-1_3

Download citation

Publish with us

Policies and ethics