Skip to main content

Local and global minimality results for an isoperimetric problem with long-range interactions

  • Conference paper
Free Discontinuity Problems

Part of the book series: Publications of the Scuola Normale Superiore ((CRMSNS,volume 19))

Abstract

In this paper we review some recent results concerning the following non-local isoperimetric problem:

where m ∈ (-1,1) is given and prescribes the volume of the two phases {u = 1} and {u = -1}. Here PΩ stands for the perimeter relative to Ω (in the sense of Caccioppoli-De Giorgi) and BV(Ω; {-1, 1}) denotes the space of functions of bounded variation taking values in {-1, 1}. We refer to [4] and [33] for a rather complete account on the properties of functions of bounded variations and sets of finite perimeter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Acerbi, N. Fusco and M. Morini, Minimality via second variation for a nonlocal isoperimetric problem, Comm. Math. Phys. 322 (2013), 515–557.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Alberti, R. Choksi and F. Otto, Uniform energy distribution for an isoperimetric problem with long-range interactions, J. Amer. Math. Soc. 22 (2009), 569–605.

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Ambrosio, V. Caselles, S. Masnou and J. M. Morel, Connected components of sets of finite perimeter and applications to image processing, J. Eur. Math. Soc. (JEMS) 3 (2001), 39–92.

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Ambrosio, N. Fusco and D. Pallara, “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.

    MATH  Google Scholar 

  5. M. Bonacini and R. Cristoferi, Local and global minimality results for a nonlocal isoperimetric problem onN, SIAM J. Math. Anal. 46 (2014), 2310–2349.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Braides, “Γ -Convergence for Beginners”, Oxford Lecture Series in Mathematics and its Applications, Vol. 22. Oxford University Press, Oxford, 2002.

    Google Scholar 

  7. R. Choksi and M. Peletier, A. Small volume-fraction limit of the diblock copolymer problem: I. Sharp-interface functional, SIAM J. Math. Anal. 42 (2010), 1334–1370.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Choksi and M. Peletier, A. Small volume-fraction limit of the diblock copolymer problem: II. Diffuse-interface functional, SIAM J. Math. Anal. 43 (2011), 739–763.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Choksi and X. Ren, On the derivation of a density functional theory for microphase separation of diblock copolymers, J. Statist. Phys. 113 (2003), 151–176.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Choksi and P. Sternberg, Periodic phase separation: the periodic Cahn-Hilliard and isoperimetric problems, Interfaces Free Bound. 8 (2006), 371–392.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Choksi and P. Sternberg, On the first and second variations of a nonlocal isoperimetric problem, J. reine angew. Math. 611 (2007), 75–108.

    MathSciNet  MATH  Google Scholar 

  12. M. Cicalese and G. Leonardi, A selection principle for the sharp quantitative isoperimetric inequality, Arch. Ration. Mech. Anal. 206 (2012), 617–643.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Cicalese and E. Spadaro, Droplet minimizers of an isoperimetric problem with long-range interactions, Comm. Pure Appl. Math. 66 (2013), 1298–1333.

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Dal Maso, “An Introduction to Γ-Convergence”, Progress in Nonlinear Differential Equations and their Applications, Vol. 8, Birkhäuser Boston, Inc., Boston, MA, 1993.

    Google Scholar 

  15. L. Esposito and N. Fusco, A remark on a free interface problem with volume constraint, J. Convex Anal. 18 (2011), 417–426.

    MathSciNet  MATH  Google Scholar 

  16. A. Figalli, N. Fusco, F. Maggi, V. Millot and M. Morini, Isoperimetry and stability properties of balls with respect to nonlocal energies, Comm. Math. Phys. 336 (2015), 441–507.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Figalli, F. Maggi and A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities, Invent. Math. 182 (2010), 167–211.

    Article  MathSciNet  MATH  Google Scholar 

  18. N. Fusco, F. Maggi and A. Pratelli, The sharp quantitative isoperimetric inequality, Ann. of Math. 168 (2008), 941–980.

    Article  MathSciNet  MATH  Google Scholar 

  19. N. Fusco and M. Morini, Equilibrium configurations of epitaxially strained elastic films: second order minimality conditions and qualitative properties of solutions, Arch. Rational Mech. Anal. 203 (2012), 247–327.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Gilbarg and N. S. Trudinger, “Elliptic Partial Differential Equations of Second Order”, Second Edition, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer Verlag, Berlin 1983.

    Google Scholar 

  21. D. Goldman, C. B. Muratov and S. Serfaty, The Γ-limit of the two-dimensional Ohta-Kawasaki energy. I. Droplet density, Arch. Ration. Mech. Anal. 210 (2013), 581–613.

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Goldman, C. B. Muratov and S. Serfaty, The Γ-limit of the two-dimensional Ohta-Kawasaki energy. Droplet arrangement via the renormalized energy, Arch. Ration. Mech. Anal. 212 (2014), 445–501.

    Article  MathSciNet  MATH  Google Scholar 

  23. K. Grosse-Brauckmann, Stable constant mean curvature surfaces minimize area, Pacific. J. Math. 175 (1996), 527–534.

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Hadwiger, Gitterperiodische Punktmengen und Isoperimetrie, Monatsh. Math. 76 (1972), 410–418.

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Howards, M. Hutchings and F. Morgan, The isoperimet-ric problem on surfaces, Amer. Math. Monthly 106 (1999), 430–439.

    Article  MathSciNet  MATH  Google Scholar 

  26. V. Julin, Isoperimetric problem with a Coulomb repulsive term, Indiana Univ. Math. J. 63 (2014), 77–89.

    Article  MathSciNet  MATH  Google Scholar 

  27. V. Julin and G. Pisante, Minimality via second variation for microphase separation of diblock copolymer melts, J. Reine Angew. Math., to appear.

    Google Scholar 

  28. H. KnÜpfer and C. B. Muratov, On an isoperimetric problem with a competing nonlocal term I: The planar case, Comm. Pure Appl. Math. 66 (2013), 1129–1162.

    Article  MathSciNet  MATH  Google Scholar 

  29. H. KnÜpfer and C. B. Muratov, On an isoperimetric problem with a competing nonlocal term II: The general case, Comm. Pure Appl. Math. 67 (2014), 1974–1994.

    Article  MathSciNet  MATH  Google Scholar 

  30. R. V. Kohn and P. Sternberg, Local minimisers and singular perturbations, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), 69–84.

    Article  MathSciNet  MATH  Google Scholar 

  31. N. S. Landkof, “Foundations of Modern Potential Theory”, Springer-Verlag, 1972.

    Book  MATH  Google Scholar 

  32. J. Lu and F. Otto, Nonexistence of a minimizer for Thomas-Fermi-Dirac-von WeizsŁcker model, Comm. Pure Appl. Math. 67 (2014), 1605–1617.

    Article  MathSciNet  MATH  Google Scholar 

  33. F. Maggi, “Sets of Finite Perimeter and Geometric Variational Problems. An Introduction to Geometric Measure Theory”, Cambridge Studies in Advanced Mathematics, Vol. 135, Cambridge University Press, Cambridge, 2012.

    Google Scholar 

  34. L. Modica, The gradient theory of phase transitions and minimal interface criterion, Arch. Rational Mech. Anal. 98 (1987), 123–142.

    Article  MathSciNet  MATH  Google Scholar 

  35. F. Morgan and A. Ros, Stable constant-mean-curvature hypersurfaces are area minimizing in small L1 neighbourhoods, Interfaces Free Bound. 12 (2010), 151–155.

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Morini and P. Sternberg, Cascade of minimizers for a nonlocal isoperimetric problem in thin domains, SIAM J. Math. Anal. 46 (2014), 2033–2051.

    Article  MathSciNet  MATH  Google Scholar 

  37. S. MÜller, Singular perturbations as a selection criterion for periodic minimizing sequences, Calc. Var. Partial Differential Equations 1 (1993), 169–204.

    Article  MathSciNet  MATH  Google Scholar 

  38. C. B. Muratov, Theory of domain patterns in systems with long-range interactions of Coulomb type, Phys. Rev. E 66 (2002), 066108.

    Article  MathSciNet  Google Scholar 

  39. C. B. Muratov, Droplet phases in non-local Ginzburg-Landau models with Coulomb repulsion in two dimensions, Commun. Math. Phys. 299 (2010), 45–87.

    Article  MathSciNet  MATH  Google Scholar 

  40. C. B. Muratov and V. V. Osipov, General theory of instabilities for patterns with sharp interfaces in reaction-diffusion systems, Phys. Rev. E 53 (1996), 3101–3116.

    Article  MathSciNet  Google Scholar 

  41. C. B. Muratov and A. Zaleski, On an isoperimetric problem with a competing non-local term: quantitative results, Ann. Global Anal. Geom. 47 (2015), 63–80.

    Article  MathSciNet  MATH  Google Scholar 

  42. T. Ohta and K. Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules 19 (1986), 2621–2632.

    Article  Google Scholar 

  43. L. Simon, “Lectures on Geometric Measure Theory”, Proceedings of the Centre for Mathematical Analysis, Australian National University, Canberra, 1983.

    Google Scholar 

  44. X. Ren and J. Wei, Concentrically layered energy equilibria of the di-block copolymer problem, European J. Appl. Math. 13 (2002), 479–496.

    Article  MathSciNet  MATH  Google Scholar 

  45. X. Ren and J. Wei, On energy minimizers of the diblock copolymer problem, Interfaces Free Bound. 5 (2003), 193–238.

    Article  MathSciNet  MATH  Google Scholar 

  46. X. Ren and J. Wei, Stability of spot and ring solutions of the di-block copolymer equation, J. Math. Phys. 45 (2004), 4106–4133.

    Article  MathSciNet  MATH  Google Scholar 

  47. X. Ren and J. Wei, Wriggled lamellar solutions and their stability in the diblock copolymer problem, SIAM J. Math. Anal. 37 (2005), 455–489.

    Article  MathSciNet  MATH  Google Scholar 

  48. X. Ren and J. Wei, Many droplet pattern in the cylindrical phase of diblock copolymer morphology, Rev. Math. Phys. 19 (2007), 879–921.

    Article  MathSciNet  MATH  Google Scholar 

  49. X. Ren and J. Wei, Spherical solutions to a nonlocal free boundary problem from diblock copolymer morphology, SIAM J. Math. Anal. 39 (2008), 1497–1535.

    Article  MathSciNet  MATH  Google Scholar 

  50. M. Ross, Schwartz’ P and D surfaces are stable, Differential Geom. Appl. 2 (1992), 179–195.

    Article  MathSciNet  MATH  Google Scholar 

  51. E. N. Spadaro, Uniform energy and density distribution: diblock copolymers’ functional, Interfaces Free Bound. 11 (2009), 447–474.

    Article  MathSciNet  MATH  Google Scholar 

  52. P. Sternberg and I. Topaloglu, On the global minimizers of a nonlocal isoperimetric problem in two dimensions, Interfaces Free Bound. 13 (2011), 155–169.

    Article  MathSciNet  MATH  Google Scholar 

  53. I. Tamanini, Boundaries of Caccioppoli sets with Hölder-continuous normal vector, J. Reine Angew. Math. 334 (1982), 27–39.

    MathSciNet  MATH  Google Scholar 

  54. E. L. Thomas, D. M. Anderson, C. S. Henkee and D. Hoffman, Periodic area-minimizing surfaces in block copolymers, Nature 334 (1988), 598–601.

    Article  Google Scholar 

  55. I. Topaloglu, On a nonlocal isoperimetric problem on the two-sphere, Comm. Pure Appl. Anal. 12, 597–620, (2013).

    Article  MathSciNet  MATH  Google Scholar 

  56. E. Valdinoci, A fractional framework for perimeters and phase transitions, Milan J. Math. 81 (2013), 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  57. B. White, A strong minimax property of nondegenerate minimal submanifolds, J. Reine Angew. Math. 457 (1994), 203–218.

    MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Nicola Fusco Aldo Pratelli

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Scuola Normale Superiore Pisa

About this paper

Cite this paper

Morini, M. (2016). Local and global minimality results for an isoperimetric problem with long-range interactions. In: Fusco, N., Pratelli, A. (eds) Free Discontinuity Problems. Publications of the Scuola Normale Superiore, vol 19. Edizioni della Normale, Pisa. https://doi.org/10.1007/978-88-7642-593-6_3

Download citation

Publish with us

Policies and ethics