Skip to main content

The regularity problem for sub-Riemannian geodesics

  • Conference paper
Geometric Measure Theory and Real Analysis

Part of the book series: Publications of the Scuola Normale Superiore ((CRMSNS,volume 17))

Abstract

We study the regularity problem for sub-Riemannian geodesics, i.e., for those curves that minimize length among all curves joining two fixed endpoints and whose derivatives are tangent to a given, smooth distribution of planes with constant rank. We review necessary conditions for optimality and we introduce extremals and the Goh condition. The regularity problem is nontrivial due to the presence of the so-called abnormal extremals, i.e., of certain curves that satisfy the necessary conditions and that may develop singularities. We focus, in particular, on the case of Carnot groups and we present a characterization of abnormal extremals, that was recently obtained in collaboration with E. Le Donne, G. P. Leonardi and R. Monti, in terms of horizontal curves contained in certain algebraic varieties. Applications to the problem of geodesics’ regularity are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 37.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. A. AGRACHEV, Any sub-Riemannian metric has points of smoothness (Russian). Dokl. Akad. Nauk 424 (2009), no. 3, 295–298; translation in Dokl. Math. 79 (2009), no. 1, 45–47.

    MathSciNet  Google Scholar 

  2. A. A. AGRACHEV, Some open problems, In: “Geometric Control Theory and Sub-Riemannian Geometry”, Springer INdAM Series 5 (2014), 1–14.

    MathSciNet  Google Scholar 

  3. A. A. AGRACHEV, D. BARILARI and U. BOSCAIN, Introduction to Riemannian and Sub-Riemannian geometry. Preprint available at www.math.jussieu.fr/ barilari/

    Google Scholar 

  4. A. A. AGRACHEV and Y. L. SACHKOV, Control theory from the geometric viewpoint, In: “Encyclopaedia of Mathematical Sciences”, Vol. 87, Control Theory and Optimization, II. SpringerVerlag, Berlin, 2004, xiv+412.

    Google Scholar 

  5. L. AMBROSIO and S. RIGOT, Optimal mass transportation in the Heisenberg group, J. Funct. Anal. 208 (2004), no. 2, 261–301.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. BELLAïCHE, The tangent space in subriemannian geometry. In: “Subriemannian Geometry”, Progress in Mathematics 144, A. Bellaiche and J. Risler (eds.), Birkhauser Verlag, Basel, 1996.

    Google Scholar 

  7. V. G. BOLTYANSKII, Sufficient conditions for optimality and the justification of the dynamic programming method. SIAM J. Control 4 (1966), 326–361.

    Article  MathSciNet  Google Scholar 

  8. C. CARATHéODORY, Untersuchungen über die Grundlagen der Thermodynamik, Math. Ann. 67 (1909), 355–386.

    Article  MathSciNet  Google Scholar 

  9. Y. CHITOUR, F. JEAN & E. TRéLAT, Genericity results for singular curves, J. Differential Geom. 73 (2006), no. 1, 45–73.

    MATH  MathSciNet  Google Scholar 

  10. W. L. CHOW, Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann. 117 (1939), 98–105.

    MathSciNet  Google Scholar 

  11. C. GOLé and R. KARIDI, A note on Carnot geodesics in nilpotent Lie groups, J. Dynam. Control Systems 1 (1995), no. 4, 535–549.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. GRAYSON and R. GROSSMAN, Models for free nilpotent Lie algebras, J. Algebra 135 (1990), no. 1, 177–191.

    Article  MATH  MathSciNet  Google Scholar 

  13. U. HAMENSTäDT, Some regularity theorems for Carnot-Carathéodory metrics, J. Differential Geom. 32 (1990), no. 3, 819–850.

    MATH  MathSciNet  Google Scholar 

  14. L. HöRMANDER, Hypoelliptic second-order differential equations, Acta Math. 121 (1968), 147–171.

    Article  Google Scholar 

  15. E. LE DONNE, A metric characterization of Carnot groups, Proc. Amer. Math. Soc., to appear. Preprint available at arxiv.org/abs/1304.7493.

    Google Scholar 

  16. E. LE DONNE, Lecture notes on sub-Riemannian geometry. Preprint available at sites.google.com/site/enricoledonne/.

    Google Scholar 

  17. E. LE DONNE, G. P. LEONARDI, R. MONTI and D. VITTONE, Extremal curves in nilpotent Lie groups, Geom. Funct. Anal. 23 (2013), 1371–1401.

    Article  MATH  MathSciNet  Google Scholar 

  18. E. LE DONNE, G. P. LEONARDI, R. MONTI and D. VITTONE, Extremal polynomials in stratified groups. Preprint available at cvgmt.sns.it.

    Google Scholar 

  19. E. LE DONNE, G. P. LEONARDI, R. MONTI and D. VITTONE, Corners in non-equiregular sub-Riemannian manifolds, ESAIM Control Optim. Calc. Var., to appear. Preprint available at cvgmt.sns.it.

    Google Scholar 

  20. E. B. LEE and L. MARKUS, “Foundations of Optimal Control Theory”, second edition, Robert E. Krieger Publishing Co., Inc., Melbourne, FL, 1986. xii+576 pp.

    Google Scholar 

  21. G. P. LEONARDI and R. MONTI, End-point equations and regularity of sub-Riemannian geodesics, Geom. Funct. Anal. 18 (2008), no. 2, 552–582.

    Article  MATH  MathSciNet  Google Scholar 

  22. W. LIU and H. J. SUSSMAN, Abnormal sub-Riemannian minimizers, Differential equations, dynamical systems, and control science, Lecture Notes in Pure and Appl. Math., Vol. 152, Dekker, New York, 1994, 705–716.

    Google Scholar 

  23. W. LIU and H. J. SUSSMAN, Shortest paths for sub-Riemannian metrics on rank-two distributions, Mem. Amer. Math. Soc. 118 (1995), no. 564, x+104 pp.

    MathSciNet  Google Scholar 

  24. G. A. MARGULIS and G. D. MOSTOW, Some remarks on the definition of tangent cones in a Carnot-Carathéodory space, J. Anal. Math. 80 (2000), 299–317.

    Article  MATH  MathSciNet  Google Scholar 

  25. J. MITCHELL, On Carnot-Carathèodory metrics. J. Differential Geom. 21 (1985), 35–45.

    MATH  MathSciNet  Google Scholar 

  26. R. MONTGOMERY, Abnormal minimizers, SIAM J. Control Optim. 32 (1994), no. 6, 1605–1620.

    Article  MATH  MathSciNet  Google Scholar 

  27. R. MONTGOMERY, “A Tour of Subriemannian Geometries, their Geodesics and Applications”, Mathematical Surveys and Monographs, Vol. 91, American Mathematical Society, Providence, RI, 2002. xx+259.

    Google Scholar 

  28. R. MONTI, A family of nonminimizing abnormal curves, Ann. Mat. Pura Appl. (online). Preprint available at cvgmt.sns.it.

    Google Scholar 

  29. R. MONTI, Regularity results for sub-Riemannian geodesics, Calc. Var. Partial Differential Equations 49 (2014), no. 1–2, 549–582.

    Article  MATH  MathSciNet  Google Scholar 

  30. R. MONTI, The regularity problem for sub-Riemannian geodesics, In: “Geometric Control Theory and Sub-Riemannian Geometry”, Springer INdAM Series 5 (2014), 313–332.

    MathSciNet  Google Scholar 

  31. D. MORBIDELLI, Fractional Sobolev norms and structure of Carnot-Carathèodory balls for Hörmander vector fields, Studia Math. 139 (2000), no. 3, 213–244.

    MATH  MathSciNet  Google Scholar 

  32. A. NAGEL, E. M. STEIN and S. WAINGER, Balls and metrics defined by vector fields I: basic properties, Acta Math. 155 (1985), 103–147.

    Article  MATH  MathSciNet  Google Scholar 

  33. P. K. RASHEVSKY, Any two points of a totally nonholonomic space may be connected by an admissible line, Uch. Zap. Ped. Inst. im. Liebknechta, Ser. Phys.Math. 2 (1938) 83–94.

    Google Scholar 

  34. L. RIFFORD and E. TRéLAT, Morse-Sard type results in sub-Riemannian geometry, Math. Ann. 332 (2005), no. 1, 145–159.

    Article  MATH  MathSciNet  Google Scholar 

  35. R. STRICHARTZ, Sub-Riemannian geometry, J. Differential Geom. 24 (1986), no. 2, 221–263.

    MATH  MathSciNet  Google Scholar 

  36. R. STRICHARTZ, Corrections to: Sub-Riemannian geometry, J. Differential Geom. 30 (1989), no. 2, 595–596.

    MathSciNet  Google Scholar 

  37. H. J. SUSSMANN, A cornucopia of four-dimensional abnormal sub-Riemannian minimizers. In: “Subriemannian Geometry”, Progress in Mathematics 144, A. Bellaiche and J. Risler (eds.), Birkhäuser Verlag, Basel, 1996.

    Google Scholar 

  38. K. TAN and X. YANG, Subriemannian geodesics of Carnot groups of step 3, ESAIM Control Optim. Calc. Var. 19 (2013), no. 1, 274–287.

    Article  MATH  MathSciNet  Google Scholar 

  39. N. TANAKA, On differential systems, graded Lie algebras and pseudogroups, J. Math. Kyoto Univ. 10 (1970), 1–82.

    MATH  MathSciNet  Google Scholar 

  40. V. S. VARADARAJAN, “Lie Groups, Lie Algebras, and their Representations”, Graduate Texts in Mathematics, Springer-Verlag, New York, 1974.

    Google Scholar 

  41. B. WARHURST, Tanaka prolongation of free Lie algebras, Geom. Dedicata 130 (2007), 59–69.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Luigi Ambrosio

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Scuola Normale Superiore Pisa

About this paper

Cite this paper

Vittone, D. (2014). The regularity problem for sub-Riemannian geodesics. In: Ambrosio, L. (eds) Geometric Measure Theory and Real Analysis. Publications of the Scuola Normale Superiore, vol 17. Edizioni della Normale, Pisa. https://doi.org/10.1007/978-88-7642-523-3_4

Download citation

Publish with us

Policies and ethics