Skip to main content

The cohomology of the braid group B 3 and of SL 2(ℤ) with coefficients in a geometric representation

  • Conference paper
Configuration Spaces

Part of the book series: CRM Series ((CRMSNS))

  • 1248 Accesses

Abstract

This article is a short version of a paper which addresses the cohomology of the third braid group and of SL2(ℤ) with coefficients in geometric representations. We give precise statements of the results, some tools and some proofs, avoiding very technical computations here.

Partially supported by DARPA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 24.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 34.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Anick, Differential algebras in topology, Research Notes in Mathematics, Vol. 3, A K Peters Ltd., Wellesley, MA, 1993. MR1213682 (94h:55020)

    Google Scholar 

  2. E. Brieskorn, Sur les groupes de tresses [d’après V. I. Arnol’d], Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401, Springer, Berlin, 1973, pp. 21–44. Lecture Notes in Math., Vol. 317. MR0422674 (54 #10660)

    Chapter  Google Scholar 

  3. K. S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, 1994, Corrected reprint of the 1982 original. MR1324339 (96a:20072)

    Google Scholar 

  4. H. Cartan, Puissances dividées, Séminaire Henri Cartan; 7e année: 1954/55. Algébre d’Eilenberg-Maclane et homotopie, Expose no. 7, Secrétariat mathématique, Paris, 1956, p. 11.

    Google Scholar 

  5. F. R. Cohen, On genus one mapping class groups, function spaces, and modular forms, Topology, geometry, and algebra: interactions and new directions (Stanford, CA, 1999), Contemp. Math., vol. 279, Amer. Math. Soc., Providence, RI, 2001, pp. 103–128. MR1850743 (2002f:55037)

    Google Scholar 

  6. C. De Concini and C. Procesi, Wonderful models of subspace arrangements, Selecta Math. (N.S.) 1 (1995), no. 3, 459–494. MR1366622 (97k:14013)

    Article  MATH  MathSciNet  Google Scholar 

  7. C. De Concini and M. Salvetti, Cohomology of Artin groups: Addendum: “The homotopy type of Artin groups” [Math. Res. Lett. 1 (1994), no. 5, 565–577; MR1295551 (95j:52026)] by Salvetti, Math. Res. Lett. 3 (1996), no. 2, 293–297. MR1386847 (97b:52015)

    Article  MATH  MathSciNet  Google Scholar 

  8. L. Eu. Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1911), no. 1, 75–98. MR1500882

    Article  MATH  MathSciNet  Google Scholar 

  9. C. J. Earle and J. Eells, A fibre bundle description of Teichmüller theory, J. Differential Geometry 3 (1969), 19–43. MR0276999 (43 #2737a)

    MATH  MathSciNet  Google Scholar 

  10. M. Eichler, Eine Verallgemeinerung der Abelschen Integrale, Math. Z. 67 (1957), 267–298. MR0089928 (19,740a)

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Furusawa, M. Tezuka and N. Yagita, On the cohomology of classifying spaces of torus bundles and automorphic forms, J. London Math. Soc. (2) 37 (1988), no. 3, 520–534. MR939127 (89f:57060)

    Article  MATH  MathSciNet  Google Scholar 

  12. B. Gray and S. Theriault, An elementary construction of Anick’s fibration, Geom. Topol. 14 (2010), no. 1, 243–275. MR2578305 (2011a:55013)

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR1867354 (2002k:55001)

    MATH  Google Scholar 

  14. E. Looijenga, The complement of the bifurcation variety of a simple singularity, Invent. Math. 23 (1974), 105–116. MR0422675 (54 #10661)

    Article  MATH  MathSciNet  Google Scholar 

  15. E. Looijenga, Stable cohomology of the mapping class group with symplectic coefficients and the universal Abel-Jacobi map, J. Algebraic Geom. 5 (1996), no. 1, 135–150. MR1358038 (97g:14026)

    MATH  MathSciNet  Google Scholar 

  16. J. Milnor, Introduction to algebraic K-theory, Princeton University Press, Princeton, N.J., 1971, Annals of Mathematics Studies, No. 72. MR0349811 (50 #2304)

    MATH  Google Scholar 

  17. W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers [John Wiley & Sons, Inc.], New York-London-Sydney, 1966. MR0207802 (34 #7617)

    MATH  Google Scholar 

  18. M. Salvetti, The homotopy type of Artin groups, Math. Res. Lett. 1 (1994), no. 5, 565–577. MR1295551 (95j:52026)

    Article  MATH  MathSciNet  Google Scholar 

  19. J.-P. Serre, Trees, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003, Translated from the French original by John Stillwell, Corrected 2nd printing of the 1980 English translation. MR1954121 (2003m:20032)

    Google Scholar 

  20. G. Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo, 1971, Kanô Memorial Lectures, No. 1. MR0314766 (47 #3318)

    Google Scholar 

  21. R. Steinberg, On Dickson’s theorem on invariants, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), no. 3, 699–707. MR927606 (89c:11177)

    MATH  MathSciNet  Google Scholar 

  22. B. Wajnryb, On the monodromy group of plane curve singularities, Math. Ann. 246 (1979/80), no. 2, 141–154. MR564684 (81d:14016)

    Google Scholar 

Download references

Authors

Editor information

A. Bjorner F. Cohen C. De Concini C. Procesi M. Salvetti

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Scuola Normale Superiore Pisa

About this paper

Cite this paper

Callegaro, F., Cohen, F.R., Salvetti, M. (2012). The cohomology of the braid group B 3 and of SL 2(ℤ) with coefficients in a geometric representation. In: Bjorner, A., Cohen, F., De Concini, C., Procesi, C., Salvetti, M. (eds) Configuration Spaces. CRM Series. Edizioni della Normale, Pisa. https://doi.org/10.1007/978-88-7642-431-1_8

Download citation

Publish with us

Policies and ethics