Skip to main content

Analytic continuation of a parametric polytope and wall-crossing

  • Conference paper
Configuration Spaces

Part of the book series: CRM Series ((CRMSNS))

Abstract

We define a set theoretic “analytic continuation” of a polytope defined by inequalities. For the regular values of the parameter, our construction coincides with the parallel transport of polytopes in a mirage introduced by Varchenko. We determine the set-theoretic variation when crossing a wall in the parameter space, and we relate this variation to Paradan’s wall-crossing formulas for integrals and discrete sums. As another application, we refine the theorem of Brion on generating functions of polytopes and their cones at vertices. We describe the relation of this work with the equivariant index of a line bundle over a toric variety and Morelli constructible support function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 24.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 34.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Avis and K. Fukuda, A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra, Discrete Comput. Geom. 8 (1992), no. 3, 295–313, ACM Symposium on Computational Geometry (North Conway, NH, 1991).

    Article  MATH  MathSciNet  Google Scholar 

  2. V. Baldoni, N. Berline, J. D. Loera, M. Köppe and M. Vergne, Computation of the highest coefficients of weighted Ehrhart quasi-polynomials for a rational polytope, arXiv:1011.1602 [math.CO], 2010.

    Google Scholar 

  3. A. I. Barvinok and J. E. Pommersheim, An algorithmic theory of lattice points in polyhedra, In: “New Perspectives in Algebraic Combinatorics”, L. J. Billera, A. Bjorner, C. Greene, R. E. Simion, and R. P. Stanley (eds.), Math. Sci. Res. Inst. Publ., vol. 38, Cambridge Univ. Press, Cambridge, 1999, pp. 91–147.

    Google Scholar 

  4. N. Berline and M. Vergne, Classes caractéristiques équivariantes. Formule de localisation en cohomologie équivariante, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 9, 539–541.

    MATH  MathSciNet  Google Scholar 

  5. A. Boysal and M. Vergne, Paradan’s wall crossing formula for partition functions and Khovanski-Pukhlikov differential operator, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 5, 1715–1752.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Brion, Points entiers dans les polyèdres convexes, Ann. Sci. École Norm. Sup. 21 (1988), no. 4, 653–663.

    MATH  MathSciNet  Google Scholar 

  7. M. Brion and M. Vergne, An equivariant Riemann-Roch theorem for complete, simplicial toric varieties, J. Reine Angew. Math. 482 (1997), 67–92.

    MATH  MathSciNet  Google Scholar 

  8. M. Brion and M. Vergne, Lattice points in simple polytopes, J.A.M.S. 10 (1997).

    Google Scholar 

  9. M. Brion and M. Vergne, Residue formulae, vector partition functions and lattice points in rational polytopes, J. Amer. Math. Soc. 10 (1997), 797–833.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Cavalieri, P. Johnson and H. Markwig, Chamber structure of double Hurwitz numbers, 2010, arXiv:1003.1805v1.

    Google Scholar 

  11. D. Cox, J. Little and H. Schenck, Toric varieties, 2010, Available at http://www.cs.amherst.edu/dac/toric.html.

  12. W. Dahmen and C. A. Micchelli, The number of solutions to linear Diophantine equations and multivariate splines, Trans. Amer. Math. Soc. 308 (1988), no. 2, 509–532.

    Article  MATH  MathSciNet  Google Scholar 

  13. C. De Concini, C. Procesi and M. Vergne, Vector partition function and generalized Dahmen-Micchelli spaces, 2008, arXiv:0805.2907v2.

    Google Scholar 

  14. Y. Karshon and S. Tolman, The moment map and line bundles over presymplectic toric manifolds, J. Differential Geom. 38 (1993), no. 3, 465–484.

    MATH  MathSciNet  Google Scholar 

  15. J. Lawrence, Polytope volume computation, Math. Comp. 57 (1991), no. 195, 259–271.

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Morelli, The K-theory of a toric variety, Adv. Math. 100 (1993), no. 2, 154–182.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Mustata, Vanishing theorems on toric varieties, Tohoku Math. J. (2) 54 (2002), no. 3, 451–470.

    Article  MATH  MathSciNet  Google Scholar 

  18. P.-E. Paradan, Jump formulas in Hamiltonian geometry, 2004, arXiv math 0411306, to appear in Geometric Aspects of Analysis and Mechanics, Proceedings of the conference in honor of H. Duistermaat, Utrecht 2007.

    Google Scholar 

  19. A. Szenes and M. Vergne, Residue formulae for vector partitions and Euler-Maclaurin sums, Formal power series and algebraic combinatorics — Scottsdale, AZ, 2001, Adv. in Appl. Math., vol. 30, 2003, arXiv math 0202253, pp. 295–342.

    Google Scholar 

  20. A. N. Varchenko, Combinatorics and topology of the arrangement of affine hyperplanes in the real space, Functional Anal. Appl. 21, no. 1 (1987), 9–19, Russian original publ. Funktsional. Anal. i Prilozhen. 21 (1987), no. 1, p.11–22.

    MATH  MathSciNet  Google Scholar 

Download references

Authors

Editor information

A. Bjorner F. Cohen C. De Concini C. Procesi M. Salvetti

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Scuola Normale Superiore Pisa

About this paper

Cite this paper

Berline, N., Vergne, M. (2012). Analytic continuation of a parametric polytope and wall-crossing. In: Bjorner, A., Cohen, F., De Concini, C., Procesi, C., Salvetti, M. (eds) Configuration Spaces. CRM Series. Edizioni della Normale, Pisa. https://doi.org/10.1007/978-88-7642-431-1_6

Download citation

Publish with us

Policies and ethics