Skip to main content

Minimal stratifications for line arrangements and positive homogeneous presentations for fundamental groups

  • Conference paper

Part of the book series: CRM Series ((CRMSNS))

Abstract

The complement of a complex hyperplane arrangement is known to be homotopic to a minimal CW complex. There are several approaches to the minimality. In this paper, we restrict our attention to real two dimensional cases, and introduce the “dual” objects so called minimal stratifications. The strata are explicitly described as semialgebraic sets. The stratification induces a partition of the complement into a disjoint union of contractible spaces, which is minimal in the sense that the number of codimension k pieces equals the k-th Betti number.

We also discuss presentations for the fundamental group associated to the minimal stratification. In particular, we show that the fundamental groups of complements of a real arrangements have positive homogeneous presentations.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   24.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   34.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Arvola, The fundamental group of the complement of an arrangement of complex hyperplanes, Topology 31 (1992), 757–765.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Björner and G. Ziegler, Combinatorial stratification of complex arrangements, J. Amer. Math. Soc. (1) 5 (1992), 105–149.

    Article  MATH  MathSciNet  Google Scholar 

  3. D. C. Cohen and A. Suciu, The braid monodromy of plane algebraic curves and hyperplane arrangements, Comment. Math. Helvetici(2) 72 (1997), 285–315.

    Article  MATH  MathSciNet  Google Scholar 

  4. E. Delucchi, “Shelling-type Orderings of Regular CW-complexes and Acyclic Matchings of the Salvetti complex”, Int. Math. Res. Not. n. 6, 2008, pp. 39.

    Google Scholar 

  5. A. Dimca and S. Papadima, Hypersurface complements, Milnor fibers and higher homotopy groups of arrangements, Ann. of Math. (2) 158(2003), 473–507.

    Google Scholar 

  6. M. Eliyahu, D. Garber and M. Teicher, Conjugation-free geometric presentations of fundamental groups of arrangements, Manuscripta Math. (1–2) 133 (2010), 247–271.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Eliyahu, D. Garber and M. Teicher, A conjugation-free geometric presentation of fundamental groups of arrangements II: expansion and some properties, Internat. J. Algebra Comput. (5) 21 (2011), 775–792.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Falk, Homotopy types of line arrangements, Invent. Math. (1) 111(1993), 139–150.

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Gaiffi and M. Salvetti The Morse complex of a line arrangement, J. of Algebra (1) 321 (2009), 316–337.

    Article  MATH  MathSciNet  Google Scholar 

  10. V. Guillemin and A. Pollack, “Differential Topology”, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974. xvi+222.

    Google Scholar 

  11. K. Ito and M. Yoshinaga, Semi-algebraic partition and basis of Borel-Moore homology of hyperplane arrangements, Proc. Amer. Math. Soc. 140 (2012), 2065–2074.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Libgober, On the homotopy type of the complement to plane algebraic curves, J. Reine Angew. Math. 367 (1986), 103–114.

    MATH  MathSciNet  Google Scholar 

  13. B. Moishezon and M. Teicher, Braid group technique in complex geometry I: line arrangements in ℂℙ2, Contemp. Math. 78 (1988), 425–555.

    Article  MathSciNet  Google Scholar 

  14. P. Orlik and L. Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), 167–189.

    Article  MATH  MathSciNet  Google Scholar 

  15. P. Orlik and H. Terao, “Arrangements of Hyperplanes”, Grundlehren Math. Wiss. Vol. 300, Springer-Verlag, New York, 1992.

    Google Scholar 

  16. S. Papadima and A. Suciu, Higher homotopy groups of complements of complex hyperplane arrangements, Adv. Math. (1) 165 (2002), 71–100.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. Randell, The fundamental group of the complement of a union of complex hyperplanes, Invent. Math. (1) 69 (1982), 103-108. Correction, Invent. Math. 80 (1985), 467–468.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. Randell, Homotopy and group cohomology of arrangements, Topology Appl. 78 (1997), 201–213.

    Article  MATH  MathSciNet  Google Scholar 

  19. R. Randell, Morse theory, Milnor fibers and minimality of hyperplane arrangements, Proc. Amer. Math. Soc. (9) 130(2002), 2737–2743.

    Google Scholar 

  20. M. Salvetti, Arrangements of lines and monodromy of plane curves, Compositio Math. 68 (1988), 103–122.

    MATH  MathSciNet  Google Scholar 

  21. M. Salvetti, Topology of the complement of real hyperplanes in ℂ N, Invent. Math. (3) 88 (1987), 603–618.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Salvetti and S. Settepanella, Combinatorial Morse theory and minimality of hyperplane arrangements, Geom. Topol. 11 (2007), 1733–1766.

    Article  MATH  MathSciNet  Google Scholar 

  23. M. Yoshinaga, Hyperplane arrangements and Lefschetz’s hyperplane section theorem, Kodai Math. J. (2) 30 (2007), 157–194.

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Yoshinaga, The chamber basis of the Orlik-Solomon algebra andAomoto complex, Arkiv för Matematik47 (2009), 393–407.

    Article  MATH  MathSciNet  Google Scholar 

  25. M. Yoshinaga, Minimality of hyperplane arrangements and basis of local system cohomology, In: “The Proceedings of the 5-th Franco-Japanese Symposium on Singularities”, IRMA Lectures in Mathematics and Theoretical Physics, to appear.

    Google Scholar 

  26. T. Zaslavsky, Facing up to arrangements: Face-count formulas for partitions of space by hyperplanes, Memoirs Amer. Math. Soc. 154 (1975).

    Google Scholar 

Download references

Authors

Editor information

A. Bjorner F. Cohen C. De Concini C. Procesi M. Salvetti

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Scuola Normale Superiore Pisa

About this paper

Cite this paper

Yoshinaga, M. (2012). Minimal stratifications for line arrangements and positive homogeneous presentations for fundamental groups. In: Bjorner, A., Cohen, F., De Concini, C., Procesi, C., Salvetti, M. (eds) Configuration Spaces. CRM Series. Edizioni della Normale, Pisa. https://doi.org/10.1007/978-88-7642-431-1_22

Download citation

Publish with us

Policies and ethics