Skip to main content

Basic questions on Artin-Tits groups

  • Conference paper
Configuration Spaces

Part of the book series: CRM Series ((CRMSNS))

Abstract

This paper is a short survey on four basic questions on Artin-Tits groups: the torsion, the center, the word problem, and the cohomology (K(π, 1) problem). It is also an opportunity to prove three new results concerning these questions: (1) if all free of infinity Artin-Tits groups are torsion free, then all Artin-Tits groups will be torsion free; (2) If all free of infinity irreducible non-spherical type Artin-Tits groups have a trivial center then all irreducible non-spherical type Artin-Tits groups will have a trivial center; (3) if all free of infinity Artin-Tits groups have solutions to the word problem, then all Artin-Tits groups will have solutions to the word problem. Recall that an Artin-Tits group is free of infinity if its Coxeter graph has no edge labeled by ∞.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 24.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 34.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Allcock, Braid pictures for Artin groups, Trans. Amer. Math. Soc. 354 (2002), no. 9, 3455–3474.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Altobelli, The word problem for Artin groups of FC type, J. Pure Appl. Algebra 129 (1998), no. 1, 1–22.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Altobelli and R. Charney, A geometric rational form for Artin groups of FC type, Geom. Dedicata 79 (2000), no. 3, 277–289.

    Article  MATH  MathSciNet  Google Scholar 

  4. K. I. Appel and P. E. Schupp, Artin groups and infinite Coxeter groups, Invent. Math. 72 (1983), no. 2, 201–220.

    Article  MATH  MathSciNet  Google Scholar 

  5. N. Bourbaki, “Eléments de mathématique”, Fasc. XXXIV, Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: Systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968.

    Google Scholar 

  6. E. Brieskorn and K. Saito, Artin-Gruppen und Coxeter-Gruppen. Invent. Math. 17 (1972), 245–271.

    Article  MATH  MathSciNet  Google Scholar 

  7. K. S. Brown, “Buildings”, Springer-Verlag, New York, 1989.

    Book  Google Scholar 

  8. F. Callegaro, D. Moroni and M. Salvetti, The K (π, 1) problem for the affine Artin group of type B̃ n and its cohomology, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 1, 1–22.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. Charney, Geodesic automation and growth functions for Artin groups of finite type, Math. Ann. 301 (1995), no. 2, 307–324.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Charney and M. W. Davis, The K (π, 1 -problem for hyperplane complements associated to infinite reflection groups. J. Amer. Math. Soc. 8 (1995), no. 3, 597–627.

    MATH  MathSciNet  Google Scholar 

  11. R. Charney and D. Peifer, The K (π, 1 -conjecture for the affine braid groups, Comment. Math. Helv. 78 (2003), no. 3, 584–600.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Chermak, Locally non-spherical Artin groups, J. Algebra 200 (1998), no. 1, 56–98.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. W. Davis, “The Geometry and Topology of Coxeter Groups”, London Mathematical Society Monographs Series, 32. Princeton University Press, Princeton, NJ, 2008.

    Google Scholar 

  14. P. Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273–302.

    Article  MATH  MathSciNet  Google Scholar 

  15. F. Digne, Présentations duales des groupes de tresses de type affine Ã, Comment. Math. Helv. 81 (2006), no. 1, 23–47.

    Article  MATH  MathSciNet  Google Scholar 

  16. F. Digne, A Garside presentation for Artin-Tits groups of type C̃ n, Preprint, arXiv: 1002.4320.

    Google Scholar 

  17. G. Ellis and E. Sköldberg, The K (π, 1) conjecture for a class of Artin groups, Comment. Math. Helv. 85 (2010), no. 2, 409–415.

    Article  MATH  MathSciNet  Google Scholar 

  18. E. Godelle, Parabolic subgroups of Artin groups of type FC, Pacific J. Math. 208 (2003), no. 2, 243–254.

    Article  MATH  MathSciNet  Google Scholar 

  19. E. Godelle, Artin-Tits groups with CAT(0) Deligne complex, J. Pure Appl. Algebra 208 (2007), no. 1, 39–52.

    Article  MATH  MathSciNet  Google Scholar 

  20. E. Godelle, L. Paris, K (π, 1) and word problems for infinite type Artin-Tits groups, and applications to virtual braid groups, Math. Z., to appear.

    Google Scholar 

  21. H. Hendriks, Hyperplane complements of large type, Invent. Math. 79 (1985), no. 2, 375–381.

    Article  MATH  MathSciNet  Google Scholar 

  22. J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29. Cambridge University Press, Cambridge, 1990.

    Book  MATH  Google Scholar 

  23. H. van der Lek, The homotopy type of complex hyperplane complements, Ph. D. Thesis, Nijmegen, 1983.

    Google Scholar 

  24. C. Okonek, Das K (π, 1)-Problem für die affinen Wurzelsysteme vom Typ A n, Cn, Math. Z. 168 (1979), no. 2, 143–148.

    Article  MATH  MathSciNet  Google Scholar 

  25. L. Paris, Universal cover of Salvetti’s complex and topology of simplicial arrangements of hyperplanes, Trans. Amer. Math. Soc. 340 (1993), no. 1, 149–178.

    MATH  MathSciNet  Google Scholar 

  26. L. Paris, Artin monoids inject in their groups, Comment. Math. Helv. 77 (2002), no. 3, 609–637.

    Article  MATH  MathSciNet  Google Scholar 

  27. J.-P. Serre, Arbres, amalgames, SL2, Astérisque, No. 46. Société Mathématique de France, Paris, 1977.

    Google Scholar 

  28. J. Tits, Groupes et géométries de Coxeter, Institut des Hautes Etudes Scientifiques, Paris, 1961.

    Google Scholar 

  29. J. Tits, Normalisateurs de tores. I. Groupes de Coxeter étendus, J. Algebra 4 (1966), 96–116.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Editor information

A. Bjorner F. Cohen C. De Concini C. Procesi M. Salvetti

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Scuola Normale Superiore Pisa

About this paper

Cite this paper

Godelle, E., Paris, L. (2012). Basic questions on Artin-Tits groups. In: Bjorner, A., Cohen, F., De Concini, C., Procesi, C., Salvetti, M. (eds) Configuration Spaces. CRM Series. Edizioni della Normale, Pisa. https://doi.org/10.1007/978-88-7642-431-1_13

Download citation

Publish with us

Policies and ethics