Skip to main content

Leibniz’ conjecture, periods & motives

  • Conference paper
Colloquium De Giorgi 2009

Part of the book series: Colloquia ((COLLOQUIASNS,volume 3))

  • 575 Accesses

Abstract

Questions on the transcendence and linear independence of periods have a long history going back at least to Euler. We shall first give in this note a historical introduction to periods with the aim to demonstrate how a very nice and deep theory evolved during 3 centuries with three themes: numbers (Euler, Leibniz, Hermite, Lindemann, Siegel, Gelfond, Schneider, Baker), Hodge theory (Hodge, De Rham, Grothendieck, Griffiths, Deligne) and motives (Deligne, Nori). One of our main intends is to discuss then how to possibly bring these themes together and to show how modern transcendence theory can solve questions which arise at the interfaces between number theory, global analysis, algebraic geometry and arithmetic algebraic geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. I. Arnold, “Huygens and Barrow, Newton and Hook”, Birkhäuser Verlag, Basel-Boston-Berlin, 1990.

    Book  Google Scholar 

  2. J. Ax, On Schanuel’s conjectures, Ann. of Math. 93 (1971), 252–268.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Baker and G. Wüstholz, Logaritmic forms and diophantine geometry, In: “New Mathematical Monographs” 9, Cambridge University Press, 2007.

    Google Scholar 

  4. Brownawell, W. Dale and K. K. Kubota, The algebraic independence of Weierstrass functions and some related numbers, Acta Arith. 33 (1977), 111–149.

    MathSciNet  MATH  Google Scholar 

  5. A. Huber-Klawitter and S. Müller-Stach, On the relation between Nori motives and Kontsevich periods, preprint (2011).

    Google Scholar 

  6. M. Kontsevich, Operads and motives in deformation quantization, Letters in Mathematical Physics 48 (1999), 35–72.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Kontsevich and D. Zagier, Periods, In: “Mathematics unlimited — 2001 and beyond”, Springer, Berlin, 2001, 771–808.

    Chapter  Google Scholar 

  8. G. Wüstholz, Über das Abelsche Analogon des Lindemannschen Satzes I, Invent. Math. 72 (1983), 363–388.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Wüstholz, Transzendenzeigenschaften von Perioden elliptischer Integrale, Journ. reine u. angew. Math. 354 (1984), 164–174.

    MATH  Google Scholar 

  10. G. Wüstholz, Zum Periodenproblem, Invent. Math. 78 (1984), 381–391.

    Article  MathSciNet  MATH  Google Scholar 

  11. Algebraische Punkte auf analytischen Untergruppen algebraischer Gruppen, Annals of Math. 129 (1989), 501–517.

    Google Scholar 

Download references

Authors

Editor information

Umberto Zannier

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Scuola Normale Superiore Pisa

About this paper

Cite this paper

Wüstholz, G. (2012). Leibniz’ conjecture, periods & motives. In: Zannier, U. (eds) Colloquium De Giorgi 2009. Colloquia, vol 3. Edizioni della Normale, Pisa. https://doi.org/10.1007/978-88-7642-387-1_3

Download citation

Publish with us

Policies and ethics