Skip to main content

Abstract

Urea cycle disorders: mortality at 10 years is 60 %, if neonatal presentation is excluded.

Organic acidurias/acidemias: most symptomatic patients carry severe handicaps.

Phenylketonuria: early treated adult patients may show impairment of selective, sustained attention and working memory.

Guanosine triphosphate cyclohydrolase 1 deficiency: most patients obtain remission of symptoms.

Classic homocystinuria: is a good example of a treatable disorder.

Fabry disease: renal transplant has improved survival to 58.2 years in males and 75.4 years in females.

Niemann-Pick type C disease: late-onset variants present severe motor, cognitive, and psychiatric impairment.

Cerebrotendinous xanthomatosis and neuronal ceroid lipofuscinoses: have lowered life expectancy.

Menkes disease: causes severe disability and poor survival rate.

Wilson’s disease: liver failure is the main life-threatening feature.

Neurodegeneration with brain iron accumulation: early-onset variants have a rapid, progressive course.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garrod AE. Inborn errors of metabolism. London: Oxford University Press; 1923.

    Google Scholar 

  2. Saudubray JM, van der Berghe G, Walter JH. Inborn metabolic diseases. 5th ed. Berlin: Springer; 2012.

    Book  Google Scholar 

  3. Blau N, Duran M, Gibson KM, Dionisi-Vici C. Physician’s guide to the diagnostic markers, treatment, and follow-up of inherited metabolic diseases. Berlin: Springer; 2014.

    Book  Google Scholar 

  4. Krishna SH, McKinney AM, Lucato LT. Congenital genetic inborn errors of metabolism presenting as an adult or persisting into adulthood: neuroimaging in the more common or recognizable disorders. Semin Ultrasound CT MR. 2014;35(2):160–91.

    Article  PubMed  Google Scholar 

  5. Bonnot O, Klünermann HH, Sedel F, et al. Diagnostic and treatment implications of psychosis secondary to treatable metabolic disorders in adults: a systematic review. Orphanet J Rare Dis. 2014;9:65. doi:10.1186/1750-1172-9-65.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Demily C, Sedel F. Psychiatric manifestations of treatable metabolic disorders in adults. Ann Gen Psychiatry. 2014;13:27. doi:10.1186/s12991-014-0027-x.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Sedel F. Inborn errors of metabolism in adult neurology. Rev Neurol (Paris). 2013;169 Suppl 1:S63–9.

    Article  Google Scholar 

  8. Gray RGF, Preece MA, Green SH, et al. Inborn errors of metabolism as a cause of neurological disease in adults: an approach to investigation. J Neurol Neurosurg Psychiatry. 2000;69:5–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Häberle J, Boddaert N, Burlina A, et al. Suggested guidelines for the diagnostic markers and management of urea cycle disorders. Orphanet J Rare Dis. 2012;7:32. doi:10.1186/1750-1172-7-32.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Güngör S, Akinci A, Firat AK, et al. Neuroimaging findings in hyperargininemia. J Neuroimaging. 2008;18(4):457–62.

    Article  PubMed  Google Scholar 

  11. Summar ML, Dobbelaere D, Brusilow S, Lee B. Diagnostic markers symptoms, frequency and mortality of 260 patients with urea cycle disorders from 21-year, multicentre study of acute hyperammoniaemic episodes. Acta Paediatr. 2008;97(10):1420–5.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Blair NF, Cremer PD, Tchan MC. Urea cycle disorders: a life-threatening yet treatable cause of metabolic encephalopathy in adults. Pract Neurol. 2015;15(1):45–8.

    Article  PubMed  Google Scholar 

  13. Nizon M, Ottolenghi C, Valayannopoulos V, et al. Long-term neurological outcome of cohort of 80 patients with classical organic acidurias. Orphanet J Rare Dis. 2013;8:148. doi:10.1186/1750-1172-8-148.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Grünert SC, Wendel U, Lindner M, et al. Clinical and neurocognitive outcome in symptomatic isovaleric acidemia. Orphanet J Rare Dis. 2012;7:9. doi:10.1186/1750-1172-7-9.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Dionisi-Vici C, Deodato F, Röschinger W, et al. ‘Classical’ organic acidurias, propionic aciduria, methylmalonic aciduria and isovaleric aciduria: long-term outcome and effects of expanded newborn screening using tandem mass spectrometry. J Inherit Metab Dis. 2006;29(2–3):383–9.

    Article  CAS  PubMed  Google Scholar 

  16. Baumgartner MR, Hörster F, Dionisi-Vici C, et al. Proposed guidelines for the diagnostic markers and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis. 2014;9:130. doi:10.1186/s13023-014-0130-8.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Kölker S, Christensen E, Leonard JV, Greenberg CR, Boneh A, Burlina AB, Burlina AP, et al. Diagnostic markers and management of glutaric aciduria type I – revised recommendations. J Inherit Metab Dis. 2011;34(3):677–94.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Drigo P, Burlina AB, Battistella PA. Subdural hematoma and glutaric aciduria type 1. Brain Dev. 1993;15(6):460–1.

    Article  CAS  PubMed  Google Scholar 

  19. Bishop FS, Liu JK, McCall TD, Brockmeyer DL. Glutaric aciduria type 1 presenting as bilateral subdural ematoma mimicking nonaccidental trauma. Case report and review of the literature. J Neurosurg. 2007;103(3 Suppl):222–6.

    Google Scholar 

  20. Garbade SF, Greenberg CR, Demirkol M, Gökçay G, Ribes A, Campistol J, Burlina AB, Burgard P, Kölker S. Unravelling the complex MRI pattern in glutaric aciduria type I using statistical models-a cohort study in 180 patients. J Inherit Metab Dis. 2014;37(5):763–73.

    Article  CAS  PubMed  Google Scholar 

  21. Citton V, Burlina A, Baracchini C, Gallucci M, et al. Apparent diffusion coefficient restriction in the white matter: going beyond acute brain territorial ischemia. Insights Imaging. 2012;3(2):155–64.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Burlina AP, Zara G, Hoffmann GF, Zschocke J, Burlina AB. Management of movement disorders in glutaryl-CoA dehydrogenase deficiency: anticholinergic drugs and botulinum toxin as additional therapeutic options. J Inherit Metab Dis. 2004;27(6):911–5.

    Article  CAS  PubMed  Google Scholar 

  23. Brown A, Crowe L, Beauchamp MH, et al. Neurodevelopmental profiles of children with glutaric aciduria type 1 diagnosed by newborn screening: a follow-up case series. JIMD Rep. 2015;18:125–34.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Viau K, Ernst SL, Vanzo RJ, et al. Glutaric acidemia type 1: outcomes before and after expanded newborn screening. Mol Genet Metab. 2012;106:430–8.

    Article  CAS  PubMed  Google Scholar 

  25. Camp KM, Parisi MA, Acosta PB, et al. Phenylketonuria scientific review conference: state of the science and future research needs. Mol Genet Metab. 2014;112(2):87–122.

    Article  CAS  PubMed  Google Scholar 

  26. Mitchell JJ, Trakadis YJ, Scriver CR. Phenylalanine hydroxylase deficiency. Genet Med. 2011;13(8):697–707.

    Article  CAS  PubMed  Google Scholar 

  27. Bodner KE, Aldridge K, Moffit AJ, et al. A volumetric study of basal ganglia structures in individuals with early-treated phenylketonuria. Mol Genet Metab. 2012;107(3):302–7.

    Article  CAS  PubMed  Google Scholar 

  28. Manara R, Burlina AP, Citton V, et al. Brain MRI diffusion-weighted imaging in patients with classical phenylketonuria. Neuroradiology. 2009;51(12):803–12.

    Article  PubMed  Google Scholar 

  29. Burlina A, Blau N. Effect of BH(4) supplementation on phenylalanine tolerance. J Inherit Metab Dis. 2009;32(1):40–5.

    Article  CAS  PubMed  Google Scholar 

  30. Vockley J, Andersson HC, Antshel KM, et al.; American College of Medical Genetics and Genomics Therapeutics Committee. Phenylalanine hydroxylase deficiency: diagnostic markers and management guideline. Genet Med. 2014;16(2):188–200.

    Google Scholar 

  31. Matalon R, Michals-Matalon K, Bathia G, Burlina AB, Burlina AP, et al. Double blind placebo control trial of large neutral amino acids in treatment of PKU: effect on blood phenylalanine. J Inherit Metab Dis. 2007;30(2):153–8.

    Article  CAS  PubMed  Google Scholar 

  32. Blau N, Longo N. Alternative therapies to address the unmet medical needs of patients with phenylketonuria. Expert Opin Pharmacother. 2015;16(6):791–800.

    Article  CAS  PubMed  Google Scholar 

  33. Longo N, Harding CO, Burton BK, et al. Single-dose, subcutaneous recombinant phenylalanine ammonia lyase conjugated with polyethylene glycol in adult patients with phenylketonuria: an open-label, multicentre, phase 1 dose-escalation trial. Lancet. 2014;384(9937):37–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Hood A, Antenor-Dorsey JA, Rutlin J, et al. Prolonged exposure to high and variable phenylalanine levels over the lifetime predicts brain white matter integrity in children with phenylketonuria. Mol Genet Metab. 2015;114(1):19–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Martino T, Koerner C, Yenokyan G, et al. Maternal hyperphenylalaninemia: rapid achievement of metabolic control predicts overall control throughout pregnancy. Mol Genet Metab. 2013;109(1):3–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Horvath GA, Stockler-Ipsiroglu SG, Salvarinova-Zivkovic R, et al. Autosomal recessive GTP cyclohydrolase I deficiency without hyperphenylalaninemia: evidence of a phenotypic continuum between dominant and recessive forms. Mol Genet Metab. 2008;94(1):127–31.

    Article  CAS  PubMed  Google Scholar 

  37. Trender-Gerhard I, Sweeney MG, Schwingenschuh P, et al. Autosomal-dominant GTPCH1-deficient DRD: clinical characteristics and long-term outcome of 34 patients. J Neurol Neurosurg Psychiatry. 2009;80:839–45.

    Article  CAS  PubMed  Google Scholar 

  38. Mencacci NE, Isaias IU, Reich MM, et al.; International Parkinson’s Disease Genomics Consortium and UCL-exomes Consortium. Parkinson’s disease in GTP cyclohydrolase 1 mutation carriers. Brain. 2014;137(Pt9):2480–92.

    Google Scholar 

  39. Opladen T, Hoffmann G, Hörster F, et al. Clinical and biochemical characterization of patients with early infantile-onset of autosomal recessive GTP cyclohydrolase I deficiency without hyperphenylalaninemia. Mov Disord. 2011;26(1):157–61.

    Article  PubMed  Google Scholar 

  40. Asanuma K, Ma Y, Huang C, Carbon-Correll M, et al. The metabolic pathology of dopa-responsive dystonia. Ann Neurol. 2005;57:596–600.

    Article  CAS  PubMed  Google Scholar 

  41. Kelly PJ, Furie KL, Kistler JP, et al. Stroke in young patients with hyperhomocysteinemia due to cystathionine beta-synthase deficiency. Neurology. 2003;60:275–9.

    Article  CAS  PubMed  Google Scholar 

  42. Vatanavicharn N, Pressman BD, Wilcox WR. Reversible leukoencephalopathy with acute neurological deterioration and permanent residua in classical homocystinuria: a case report. J Inherit Metab Dis. 2008;31 Suppl 3:S477–81.

    Article  Google Scholar 

  43. Burlina A, Burlina AP. Eye disorders. In: Zschocke J, Nyhan WL, Hoffmann GF, editors. Inherited metabolic diseases: a clinical approach. Berlin/Heidelberg: Springer; 2010.

    Google Scholar 

  44. Schiff M, Blom HJ. Treatment of inherited homocystinurias. Neuropediatrics. 2012;43(6):295–304.

    Article  CAS  PubMed  Google Scholar 

  45. Germain DP. Fabry disease. Orphanet J Rar Dis. 2010;5:30. doi:10.1186/1750-1172-5-30.

    Article  Google Scholar 

  46. Burlina AP, Sims KB, Politei JM, et al. Early of peripheral nervous system involvement in Fabry disease and treatment of neuropathic pain: the report of an expert panel. BMC Neurol. 2011;11:61. doi:10.1186/1471-2377-11-61.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Kolodny E, Fellgiebel A, Hilz MJ, et al. Cerebrovascular involvement in Fabry disease: current status of knowledge. Stroke. 2014;46(1):302–13.

    Article  PubMed  Google Scholar 

  48. Smid BE, van der Tol L, Biegstraaten M, et al. Plasma globotriaosylsphingosine in relation to phenotypes of Fabry disease. J Med Genet. 2015;52:262–8.

    Article  CAS  PubMed  Google Scholar 

  49. Rombach SM, Dekker N, Bouwman MG, et al. Plasma globotriaosylsphingosine: diagnostic value and relation to clinical manifestations of Fabry disease. Biochim Biophys Acta. 2010;1802(9):741–8.

    Article  CAS  PubMed  Google Scholar 

  50. Germain DP, Charrow J, Desnick RJ, Guffon N, Kempf J, Lachmann RH, Lemay R, Linthorst GE, Packman S, Scott CR, Waldek S, Warnock DG, Weinreb NJ, Wilcox WR. Ten-year outcome of enzyme replacement therapy with agalsidase beta in patients with Fabry disease. J Med Genet. 2015;52:353–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Burlina A. Niemann-Pick disease type C: introduction and main clinical features. J Neurol. 2014;261 Suppl 2:s525–7.

    Article  PubMed  Google Scholar 

  52. Mengel E, Klünemann HH, Lourenço CM, et al. Niemann-Pick type C symptomatology: an expert-based clinical description. Orphanet J Rare Dis. 2013;8:166. doi:10.1186/1750-1172-8-166.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Vanier MT. Niemann-Pick disease type C. Orphanet J Rare Dis. 2010;5:16. doi:10.1186/1750-1172-5-16.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Patterson MC, Hendriksz CJ, Walterfang M, et al.; NP-C Guidelines Working Group. Recommendations for the diagnostic markers and management of Niemann-Pick disease type C: an update. Mol Genet Metab. 2012;106(3):330–44.

    Google Scholar 

  55. Iodice R, Dubbioso R, Topa A, et al. Electrophysiological characterization of adult-onset Niemann-Pick type C disease. J Neurol Sci. 2015;348(1–2):262–5.

    Article  PubMed  Google Scholar 

  56. Scheel M, Abegg M, Lanyon LJ, et al. White and gray matter alterations in adults with Niemann-Pick disease type C: a cross-sectional study. Neurology. 2011;76(2):201.

    Article  CAS  PubMed  Google Scholar 

  57. Patterson MC, Mengel E, Vanier MT, et al. Stable or improved neurological manifestations during miglustat therapy in patients from the international registry for Niemann-Pick disease type C: an observational cohort study. Orphanet J Rare Dis. 2015;10:65.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Nie S, Chen G, Cao X, Zhang Y. Cerebrotendinous xanthomatosis: a comprehensive review of pathogenesis, clinical manifestations, diagnostic markers, and management. Orphanet J Rare Dis. 2014;9(1):179.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Fraidakis MJ. Psychiatric manifestations in cerebrotendinous xanthomatosis. Transl Psychiatry. 2013;3, e302. doi:10.1038/tp.2013.76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Lagarde J, Roze E, Apartis E, et al. Myoclonus and dystonia in cerebrotendinous xanthomatosis. Mov Disord. 2012;27(14):1805–10.

    Article  PubMed  Google Scholar 

  61. DeBarber AE, Luo J, Giugliani R, et al. A useful multi-analyte blood test for cerebrotendinous xanthomatosis. Clin Biochem. 2014;47(9):860–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Embiruçu EK, Otaduy MCG, Taneja AK, et al. MR spectroscopy detects lipid peaks in cerebrotendinous xanthomatosis. AJNR Am J Neuroradiol. 2010;31(7):1347–9.

    Article  PubMed  Google Scholar 

  63. Uygunoglu U, Gunduz A, Menku SF, et al. Cerebrotendinous xanthomatosis: the effectiveness of high-dose piracetam for the treatment of cerebellar and sensorial ataxia. Cerebellum. 2014;13(6):787–90.

    Article  CAS  PubMed  Google Scholar 

  64. Luyckx E, Eyskens F, Simons A, et al. Long-term follow-up on the effect of combined therapy of bile acids and statins in the treatment of cerebrotendinous xanthomatosis: a case report. Clin Neurol Neurosurg. 2014;118:9–11.

    Article  PubMed  Google Scholar 

  65. Federico A, Dotti MT. Cerebrotendinous xanthomatosis: clinical manifestations, diagnostic criteria, pathogenesis, and therapy. J Child Neurol. 2003;18:633–8.

    Article  PubMed  Google Scholar 

  66. Simonati A, Pezzini F, Moro F, Santorelli FM (2014) Neuronal Ceroid Lipofuscinoses: the increasing spectrum of an old disease Curr Mol Med. Epub Oct 10

    Google Scholar 

  67. Boustany RM. Lysosomal storage diseases – the horizon expands. Nat Rev Neurol. 2013;9(10):583–98.

    Article  CAS  PubMed  Google Scholar 

  68. Kaler SG. Inborn errors of copper metabolism. Handb Clin Neurol. 2013;113:1745–54.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Møller LB. Small amounts of functional ATP7A protein permit mild phenotype. J Trace Elem Med Biol. 2014. doi:10.1016/j.jtemb.2014.07.022.

    Google Scholar 

  70. Tchan MC, Wilcken B, Christodoulou J. The mild form of Menkes disease: a 34 year progress report on the original case. JIMD Rep. 2013;9:81–4. doi:10.1007/8904_2012_183.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Smpokou P, Samanta M, Berry GT, et al. Menkes disease in affected females: the clinical disease spectrum Am J Med Genet A. 2014;26. doi:10.1002/ajmg.a.36853

  72. Bandmann O, Weiss KH, Kaler SG. Wilson’s disease and other neurological copper disorders. Lancet Neurol. 2015;14(1):103–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Ferenci P. Phenotype-genotype correlations in patients with Wilson’s disease. Ann N Y Acad Sci. 2014;1315:1–5.

    Article  CAS  PubMed  Google Scholar 

  74. Kozić DB, Petrović I, Svetel M, et al. Reversible lesions in the brain parenchyma in Wilson’s disease confirmed by magnetic resonance imaging: earlier administration of chelating therapy can reduce the damage to the brain. Neural Regen Res. 2014;9(21):1912–6.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Guillaud O, Dumortier J, Sobersky R, et al. Long term results of liver transplantation for Wilson’s disase: experience in France. J Hepatol. 2014;60(3):579–89.

    Google Scholar 

  76. Levi S, Finazzi D. Neurodegeneration with brain iron accumulation: update on pathogenic mechanisms. Front Pharmacol. 2014;5:99.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Ward RJ, Zucca FA, Duyn JH, et al. The role of iron in brain ageing and neurodegeneration disorders. Lancet Neurol. 2014;13(10):1045–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Burlina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Italia

About this chapter

Cite this chapter

Burlina, A., Celato, A., Burlina, A.P. (2015). Inborn Errors of Metabolism. In: Sghirlanzoni, A., Lauria, G., Chiapparini, L. (eds) Prognosis of Neurological Diseases. Springer, Milano. https://doi.org/10.1007/978-88-470-5755-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5755-5_19

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5754-8

  • Online ISBN: 978-88-470-5755-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics