Skip to main content

FDG-PET Imaging for Advanced Radiotherapy Treatment of Non-Small-Cell Lung Cancer

  • Chapter
Diseases of the Chest and Heart 2015–2018

Abstract

Radiation oncology has benefited from the enormous progress that followed rapid technical developments over the last few decades. Until the 1980s, large volumes were unnecessarily irradiated during radiotherapy, due to the lack of imaging techniques to identify tumor extension, the lack of technologies to accurately conform the radiotherapy dose with the tumor, and the inability to accurately deliver radiotherapy over a prolonged fractionated course of treatment. Consequently, in many solid tumors, the radiation tolerance of the surrounding normal tissue limited the maximum irradiation dose that could be delivered safely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perez CA, Pajak TF, Rubin Pet al (1987) Long-term observations of the patterns of failure in patients with unresectable non-oat cell carcinoma of the lung treated with definitive radiotherapy. Report by the Radiation Therapy Oncology Group. Cancer 59:1874–1881.

    Article  CAS  PubMed  Google Scholar 

  2. Partridge M, Ramos M, Sardaro A et al (2011) Dose escalation for non-small cell lung cancer: analysis and modelling of published literature. Radiother Oncol 99:6–11.

    Article  PubMed  Google Scholar 

  3. Auperin A, Le Pechoux C, Rolland E et al (2010) Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol 28:2181–2190.

    Article  CAS  PubMed  Google Scholar 

  4. Lyons JA, Kupelian PA, Mohan DS et al (2000) Importance of high radiation doses (72 Gy or greater) in the treatment of stage T1–T3 adenocarcinoma of the prostate. Urology 55: 85–90.

    Article  CAS  PubMed  Google Scholar 

  5. Dearnaley DP, Khoo VS, Norman AR et al (1999) Comparison of radiation side-effects of conformai and conventional radiotherapy in prostate cancer: a randomised trial. Lancet 353:267–272.

    Article  CAS  PubMed  Google Scholar 

  6. Kalff V, Hicks RJ, MacManus MP et al (2001) Clinical impact of (18)F fluorodeoxyglucose positron emission tomography in patients with non-small-cell lung cancer: a prospective study. J Clin Oncol 19:111–118.

    CAS  PubMed  Google Scholar 

  7. Mac Manus MP, Everitt S, Bayne M et al (2013) The use of fused PET/CT images for patient selection and radical radiotherapy target volume definition in patients with non-small cell lung cancer: Results of a prospective study with mature survival data. Radiother Oncol 106:292–298.

    Article  Google Scholar 

  8. Everitt S, Herschtal A, Callahan J et al (2010) High rates of tumor growth and disease progression detected on serial pretreatment fluorodeoxyglucose-positron emission tomography/computed tomography scans in radical radiotherapy candidates with nonsmall cell lung cancer. Cancer 116:5030–5037.

    Article  PubMed  Google Scholar 

  9. D’Cunha J, Herndon JE 2nd, Herzan DL et al (2005) Poor correspondence between clinical and pathologic staging in stage 1 non-small cell lung cancer: results from CALGB 9761, a prospective trial. Lung Cancer 48:241–246.

    Article  PubMed  Google Scholar 

  10. Park HK, Jeon K, Koh WJ et al (2010): Occult nodal metastasis in patients with non-small cell lung cancer at clinical stage IA by PET/CT. Respirology 15:1179–1184.

    Article  PubMed  Google Scholar 

  11. Stiles BM, Servais EL, Lee PC et al (2009) Point: Clinical stage IA non-small cell lung cancer determined by computed tomography and positron emission tomography is frequently not pathologic IA non-small cell lung cancer: the problem of understaging. J Thorac Cardiovasc Surg 137:13–19.

    Article  PubMed  Google Scholar 

  12. Gould MK, Kuschner WG, Rydzak CE et al (2003) Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer: a meta-analysis. Ann Intern Med 139:8 9–892.

    Google Scholar 

  13. Vansteenkiste J, De Ruysscher D, Eberhardt WEE et al (2013) Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology 24(suppl 6):vi89–vi98.

    PubMed  Google Scholar 

  14. Shirvani SM, Jiang J, Chang JY et al (2012) Comparative effectiveness of 5 treatment strategies for early-stage non-small cell lung cancer in the elderly. Int J Radiat Oncol Biol Phys 84:1060–1070.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Senthi S, Lagerwaard FJ, Haasbeek CJ et al (2012) Patterns of disease recurrence after stereotactic ablative radiotherapy for early stage non-small-cell lung cancer: a retrospective analysis. Lancet Oncol 13:802–809.

    Article  PubMed  Google Scholar 

  16. Belderbos JS, Kepka L, Spring Kong FM et al (2008) Report from the International Atomic Energy Agency (IAEA) consultants’ meeting on elective nodal irradiation in lung cancer: non-small-Cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 72:335–342.

    Article  PubMed  Google Scholar 

  17. De Ruysscher D, Wanders S, van Haren E et al (2005) Selective mediastinal node irradiation based on FDG-PET scan data in patients with non-small-cell lung cancer: a prospective clinical study. Int J Radiat Oncol Biol Phys 62:988–994.

    Article  PubMed  Google Scholar 

  18. Reymen B, Van Loon J, van Baardwijk A et al (2013) Total gross tumor volume is an independent prognostic factor in patients treated with selective nodal irradiation for stage I to III small cell lung cancer. Int J Radiat Oncol Biol Phys 85:1319–1324.

    Article  PubMed  Google Scholar 

  19. Paesmans M, Berghmans T, Dusart M et al (2010) Primary tumor standardized uptake value measured on fluorodeoxyglucose positron emission tomography is of prognostic value for survival in non-small cell lung cancer: update of a systematic review and meta-analysis by the European Lung Cancer Working Party for the International Association for the Study of Lung Cancer Staging Project. J Thorac Oncol 5:612–619.

    PubMed  Google Scholar 

  20. Machtay M, Duan F, Siegel BA et al (2013) Prediction of survival by [18F]fluorodeoxyglucose positron emission tomography in patients with locally advanced non-small-cell lung cancer undergoing definitive chemoradiation therapy: Results of the ACRIN 6668/RTOG 0235 Trial. J Clin Oncol 31:3823–3830.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Aerts HJ, van Baardwijk AA, Petit SF et al (2009) Identification of residual metabolic-active areas within individual NSCLC tumours using a pre-radiotherapy (18)Fluorodeoxyglucose-PET-CT scan. Radiother Oncol 91:386–392.

    Article  PubMed  Google Scholar 

  22. Kong FM, Frey KA, Quint LE (2007) A pilot study of [18F]fluorodeoxyglucose positron emission tomography scans during and after radiation-based therapy in patients with non small-cell lung cancer. J Clin Oncol 25:3116–3123.

    Article  PubMed  Google Scholar 

  23. Ling CC, Humm J, Larson S et al (2000) Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 47:551–560.

    Article  CAS  PubMed  Google Scholar 

  24. Feng M, Kong FM, Gross M et al (2009) Using fluorodeoxyglucose positron emission tomography to assess tumor volume during radiotherapy for non-small-cell lung cancer and its potential impact on adaptive dose escalation and normal tissue sparing. Int J Radiat Oncol Biol Phys 73:1228–1234.

    Article  PubMed Central  PubMed  Google Scholar 

  25. van Elmpt W, De Ruysscher D, van der Salm A et al (2012) The PET-boost randomised phase II dose-escalation trial in non-small cell lung cancer. Radiother Oncol 104:67–71.

    Article  PubMed  Google Scholar 

  26. Mac Manus MP, Ding Z, Hogg A et al (2011) Association between pulmonary uptake of fluorodeoxyglucose detected by positron emission tomography scanning after radiation therapy for non-small-cell lung cancer and radiation pneumonitis. Int J Radiat Oncol Biol Phys 80:1365–1371.

    Article  Google Scholar 

  27. Petit SF, van Elmpt WJ, Oberije CJ et al (2011) [(1)(8)F]fluo-rodeoxyglucose uptake patterns in lung before radiotherapy identify areas more susceptible to radiation-induced lung toxicity in non-small-cell lung cancer patients. Int J Radiat Oncol Biol Phys 81:698–705.

    Article  PubMed  Google Scholar 

  28. Hanna GG, van Sornsen de Koste JR, Dahele MR et al (2012) Defining target volumes for stereotactic ablative radiotherapy of early-stage lung tumours: a comparison of three-dimensional 18F-fluorodeoxyglucose positron emission tomography and four-dimensional computed tomography. Clinical oncology (Royal College of Radiologists (Great Britain)) 24:e71–80.

    Article  CAS  Google Scholar 

  29. Kruis MF, van de Kamer JB, Houweling AC et al (2013) PET motion compensation for radiation therapy using a CT-based mid-position motion model: methodology and clinical evaluation. Int J Radiat Oncol Biol Phys 87:394–400.

    Article  PubMed  Google Scholar 

  30. Steenbakkers RJ, Duppen JC, Fitton I et al (2006) Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Int J Radiat Oncol Biol Phys 64:435–448.

    Article  PubMed  Google Scholar 

  31. Sridhar P, Mercier G, Tan J et al (2014) FDG PET metabolic tumor volume segmentation and pathologic volume of primary human solid tumors. AJR Am J Roentgenol 202:1114–1119.

    Article  PubMed  Google Scholar 

  32. Huang K, Senthi S, Palma DA (2013) High-risk CT features for detection of local recurrence after stereotactic ablative radiotherapy for lung cancer. Radiother Oncol 109:51–57.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Italia

About this chapter

Cite this chapter

Guckenberger, M., Rudofsky, L., Andratschke, N. (2015). FDG-PET Imaging for Advanced Radiotherapy Treatment of Non-Small-Cell Lung Cancer. In: Hodler, J., von Schulthess, G.K., Kubik-Huch, R.A., Zollikofer, C.L. (eds) Diseases of the Chest and Heart 2015–2018. Springer, Milano. https://doi.org/10.1007/978-88-470-5752-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5752-4_23

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5751-7

  • Online ISBN: 978-88-470-5752-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics