Skip to main content

Dose-Lowering Strategies in Computed Tomography Imaging of the Lung and Heart

  • Chapter
Diseases of the Chest and Heart 2015–2018

Abstract

Since its first introduction by Hounsfield and Cormack in 1972, computed tomography (CT) has become one of the most important imaging modalities in diagnostic imaging, because of its strong impact on patient outcome. As a result, CT utilization has risen 10% per year during the last 15 years in the USA [1] and 142% between 1998 and 2008 in Switzerland [2]. In 2008, CT was responsible for 68% of the yearly Swiss medical radiation exposure while accounting for only 6% of the ionizing radiation examinations [2]. Current knowledge on the attributable risk of cancer induction by low level medical imaging radiation exposure (<100 submillisiev-ert, mSv) is largely based on longitudinal studies of atomic bomb survivors [3]. These data were recently augmented by two large, retrospective, epidemiologic cohort studies that showed a correlation between CT radiation exposure and a slightly increased cancer risk in children and young adults [4, 5]. However, the disease status of these patients represents a confounding factor in the interpretation of these data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mettler FA, Jr., Bhargavan M, Faulkner K et al (2009) Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources 1950–2007. Radiology 253:520–531.

    Article  PubMed  Google Scholar 

  2. Aroua A, Samara ET, Bochud FO et al (2013) Exposure of the Swiss population to computed tomography. BMC Medical Imaging 13:22.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Preston DL, Ron E, Tokuoka S et al (2007) Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiation Res 168:1–64.

    Article  CAS  PubMed  Google Scholar 

  4. Pearce MS, Salotti JA, Little MP et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380:499–505.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Mathews JD, Forsythe AV, Brady Z et al (2013) Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ 346:f2360.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Flors L, Leiva-Salinas C, Norton PT et al (2013) Endoleak detection after endovascular repair of thoracic aortic aneurysm using dual-source dual-energy CT: suitable scanning protocols and potential radiation dose reduction. AJR Am J Roentgenol 200:451–460.

    Article  PubMed  Google Scholar 

  7. Prokop M (2008) [Radiation dose in computed tomography. Risks and challenges]. Der Radiologe 48:229–242.

    Article  CAS  PubMed  Google Scholar 

  8. Karlo C, Gnannt R, Frauenfelder T et al (2011) Whole-body CT in polytrauma patients: effect of arm positioning on thoracic and abdominal image quality. Emerg Radiol 18:285–293.

    Article  PubMed  Google Scholar 

  9. Brink M, de Lange F, Oostveen LJ et al (2008) Arm raising at exposure-controlled multidetector trauma CT of thoracoabdominal region: higher image quality, lower radiation dose. Radiology 249:661–670.

    Article  PubMed  Google Scholar 

  10. Li J, Udayasankar UK, Toth TL et al (2007) Automatic patient centering for MDCT: effect on radiation dose. AJR Am J Roentgenol 188:547–552.

    Article  PubMed  Google Scholar 

  11. Mayo JR, Whittall KP, Leung AN et al (1997) Simulated dose reduction in conventional chest CT: validation study. Radiology 202:453–457.

    Article  CAS  PubMed  Google Scholar 

  12. Mayo JR, Kim KI, MacDonald SL et al (2004) Reduced radiation dose helical chest CT: effect on reader evaluation of structures and lung findings. Radiology 232:749–756.

    Article  PubMed  Google Scholar 

  13. Kalra MK, Maher MM, Toth TL (2004) Comparison of Z-axis automatic tube current modulation technique with fixed tube current CT scanning of abdomen and pelvis. Radiology 232:347–353.

    Article  PubMed  Google Scholar 

  14. Kalra MK, Maher MM, Kamath RS et al (2004) Sixteen-detector row CT of abdomen and pelvis: study for optimization of Z-axis modulation technique performed in 153 patients. Radiology 233:241–249.

    Article  PubMed  Google Scholar 

  15. Greess H, Lutze J, Nomayr A et al (2004) Dose reduction in subsecond multislice spiral CT examination of children by online tube current modulation. Eur Radiol 14:995–999.

    Article  CAS  PubMed  Google Scholar 

  16. Kalra MK, Rizzo S, Maher MM et al (2005) Chest CT performed with z-axis modulation: scanning protocol and radiation dose. Radiology 237:303–308.

    Article  PubMed  Google Scholar 

  17. Schindera ST, Nelson RC, Toth TL et al (2008) Effect of patient size on radiation dose for abdominal MDCT with automatic tube current modulation: phantom study. AJR Am J Roentgenol 190:W100–W105.

    Article  PubMed  Google Scholar 

  18. The 2007 Recommendations of the International Commission on Radiological Protection (2007) ICRP publication 103. Annals of the ICRP 37:1–332.

    Google Scholar 

  19. Duan X, Wang J, Christner JA et al (2011) Dose reduction to anterior surfaces with organ-based tube-current modulation: evaluation of performance in a phantom study. AJR Am J Roentgenol 197:689–695.

    Article  PubMed  Google Scholar 

  20. Lungren MP, Yoshizumi TT, Brady SM et al (2012) Radiation dose estimations to the thorax using organ-based dose modulation. AJR Am J Roentgenol 199:W65–73.

    Article  PubMed  Google Scholar 

  21. Taylor S, Litmanovich DE, Shahrzad M (2014) Organ-based tube current modulation: are women’s breasts positioned in the reduced-dose zone? Radiology 140694[Epub ahead of print].

    Google Scholar 

  22. Heyer CM, Mohr PS, Lemburg SP et al (2007) Image quality and radiation exposure at pulmonary CT angiography with 100- or 120-kVp protocol: prospective randomized study. Radiology 245:577–583.

    Article  PubMed  Google Scholar 

  23. Schueller-Weidekamm C, Schaefer-Prokop CM, Weber M et al (2006) CT angiography of pulmonary arteries to detect pulmonary embolism: improvement of vascular enhancement with low kilovoltage settings. Radiology 241:899–907.

    Article  PubMed  Google Scholar 

  24. Szucs-Farkas Z, Christe A, Megyeri B et al (2014) Diagnostic accuracy of computed tomography pulmonary angiography with reduced radiation and contrast material dose: a prospective randomized clinical trial. Invest Radiol 49:201–208.

    Article  CAS  PubMed  Google Scholar 

  25. Niemann T, Henry S, Faivre JB et al (2013) Clinical evaluation of automatic tube voltage selection in chest CT angiography. Eur Radiol 23:2643–2651.

    Article  PubMed  Google Scholar 

  26. Kalra MK, Woisetschlager M, Dahlstrom N et al (2013) Sinogram-affirmed iterative reconstruction of low-dose chest CT: effect on image quality and radiation dose. AJR Am J Roentgenol 201:W235–244.

    Article  PubMed  Google Scholar 

  27. Padole A, Singh S, Ackman JB et al (2014) Submillisievert chest CT with filtered back projection and iterative reconstruction techniques. AJR Am J Roentgenol 203:772–781.

    Article  PubMed  Google Scholar 

  28. Schindera ST, Odedra D, Raza SA et al (2013) Iterative reconstruction algorithm for CT: can radiation dose be decreased while low-contrast detectability is preserved? Radiology 269:511–518.

    Article  PubMed  Google Scholar 

  29. Vollmar SV, Kalender WA (2008) Reduction of dose to the female breast in thoracic CT: a comparison of standard-protocol, bismuth-shielded, partial and tube-current-modulated CT examinations. Eur Radiol 18:1674–1682.

    Article  PubMed  Google Scholar 

  30. Hurwitz LM, Yoshizumi TT, Goodman PC et al (2009) Radiation dose savings for adult pulmonary embolus 64-MDCT using bismuth breast shields, lower peak kilovoltage, and automatic tube current modulation. AJR Am J Roentgenol 192:244–253.

    Article  PubMed  Google Scholar 

  31. Aberle DR, DeMello S, Berg CD et al (2013) Results of the two incidence screenings in the National Lung Screening Trial. New England J Med 369:920–931.

    Article  CAS  Google Scholar 

  32. Nawa T, Nakagawa T, Mizoue T et al (2012) A decrease in lung cancer mortality following the introduction of low-dose chest CT screening in Hitachi, Japan. Lung Cancer 78:225–228.

    Article  PubMed  Google Scholar 

  33. Christe A, Charimo-Torrente J, Roychoudhury K et al (2013) Accuracy of low-dose computed tomography (CT) for detecting and characterizing the most common CT-patterns of pulmonary disease. Eur J Radiol 82:e142–150.

    Article  PubMed  Google Scholar 

  34. Gordic S, Morsbach F, Schmidt B et al (2014) Ultralow-dose chest computed tomography for pulmonary nodule detection: first performance evaluation of single energy scanning with spectral shaping. Invest Radiol 49:465–473.

    Article  PubMed  Google Scholar 

  35. Mayo JR, Leipsic JA (2009) Radiation dose in cardiac CT. AJR Am J Roentgenol 192:646–653.

    Article  PubMed  Google Scholar 

  36. Leipsic J, LaBounty TM, Ajlan AM et al (2013) A prospective randomized trial comparing image quality, study interpretability, and radiation dose of narrow acquisition window with widened acquisition window protocols in prospectively ECG-triggered coronary computed tomography angiography. J Cardiovasc Comput Tomogr 7:18–24.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Italia

About this chapter

Cite this chapter

Euler, A., Szucs-Farkas, Z., Mayo, J.R., Schindera, S.T. (2015). Dose-Lowering Strategies in Computed Tomography Imaging of the Lung and Heart. In: Hodler, J., von Schulthess, G.K., Kubik-Huch, R.A., Zollikofer, C.L. (eds) Diseases of the Chest and Heart 2015–2018. Springer, Milano. https://doi.org/10.1007/978-88-470-5752-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5752-4_22

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5751-7

  • Online ISBN: 978-88-470-5752-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics