Skip to main content

Ottica di Fourier

  • Chapter
  • First Online:
Manuale di Ottica
  • 860 Accesses

Abstract

Abbiamo visto che nell’approssimazione di Fresnel la propagazione di un’onda fra due piani paralleli può essere espressa in termini di una trasformata di Fourier. Qui esamineremo una tecnica alternativa basata sul fatto che il campo presente sul primo piano può essere rappresentato dal suo spettro in onde piane, per le quali, in uno spazio omogeneo, si può determinare la propagazione in modo semplice. Ricombinando queste onde si può dunque facilmente ricostruire il campo sul second piano con una trasformata inversa. Questo fatto ha due importanti applicazioni, la prima riguarda le tecniche matematiche e numeriche che si possono usare per calcolare il campo diffratto, la seconda è in un certo senso opposta alla prima e riguarda il trattamento di segnali per via ottica. In particolare, discuteremo in modo succinto alcuni argomenti che fanno uso della trasformata di Fourier, tra cui i teoremi di campionamento e le tecniche numeriche per il calcolo della diffrazione, la formazione delle immagini e l’analisi della qualità dei sistemi ottici, la teoria della coerenza e alcune sue applicazioni, il filtraggio spaziale ed infine i reticoli di diffrazione.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Riferimenti bibliografici

  • Abbe E.K., Beitrage zür theorie des mikroskops und der mikroskopischen wahrnehmung, Archiv. Microskopische Anat. 9, 413-468 (1873).

    Google Scholar 

  • Abramowitz M. e Stegun I.A., Handbook of Mathematical Functions, Dover Publications Inc., New York (1972).

    Google Scholar 

  • Arecchi F.T., Measurement of the Statistical Distribution of Gaussian and Laser Sources, Phys. Rev. Lett. 15, 912–916 (1965). An introduction to quantum optics, in “Interaction of Radiation with Condensed Matter”, Vol. I, International Atomic Energy Agency, Vienna (1977).

    Google Scholar 

  • Arecchi F.T., Courtens E., Gilmore R., Thomas H., Atomic Coherent States in Quantum Optics, Phys. Rev. A 6, 2211–2237 (1972).

    Google Scholar 

  • Arecchi F.T., Schultz E.O., Du Bois, ed., Laser Handbook, Part A, North Holland (1972).

    Google Scholar 

  • Barrett H.H. e Myers K.J., Foundations of Image Science, John Wiley & Sons Inc. ed., New York (2004).

    Google Scholar 

  • Born M. e Wolf E., Principles of Optics, Pergamon Press, Paris (1980).

    Google Scholar 

  • Cicogna G., Appunti di Metodi Matematici della Fisica, Università degli Studi di Pisa (1969).

    Google Scholar 

  • Cooley J.W. and Tukey J.W., An algorithm for the machine computation of Fourier series, Maths. of Comput. 19, 297-301 (1965).

    Google Scholar 

  • Czerny M. and Turner F., Über den astigmatismus by spiegelspectrometern, Z, Physik 61, 792-797 (1930).

    Google Scholar 

  • den Dekker A.J. and van den Bos A., Resolution: a survey, J. Opt. Soc. Am. 14, 547-557 (1997).

    Google Scholar 

  • de Wiveleslie Abney W., On the photographic method of mapping the long wavelength end of the spectrum, Phil. Trans. Royal Soc. 171, II, 653-667 (1880).

    Google Scholar 

  • Duffieux P.M., L’Intégrale de Fourier et ses applications à l’optique, Faculté des Sciences, Besançon, 1946. Ristampato da Masson et Cie, Paris (1970) e da Wiley, New York (1983).

    Google Scholar 

  • Elias P., Optics and communication theory, J. Opt. Soc. Am. 43, 229-232 (1953).

    Google Scholar 

  • Fastie W., Ebert spectrometer reflections, Physics Today 44, 37-43 (1991).

    Google Scholar 

  • Fellgett P., Concerning photographic grain, signal-to-noise ratio, and information, J. Opt. Soc. Am. 43, 271-281 (1953).

    Google Scholar 

  • Glauber R.J., Coherent and incoherent states of the radiation field, Phys. Rev. 131, 2766-2788 (1963). In “Quantum Optics and Electronics”, Les Houches Summer School of Theoretical Physics, University of Grenoble, C. DeWitt, A. Blandin and C. Cohen-Tannoudji, Eds., Gordon and Breach, New York (1965).

    Google Scholar 

  • Goldstein D.J., Understanding the light microscope, Academic Press, London (1999).

    Google Scholar 

  • Goodman J.W., Introduction to Fourier Optics, II ed., McGraw-Hill, San Francisco (1996).

    Google Scholar 

  • Gu M., Advanced Optical Imaging Theory, Springer-Verlag, Berlin (2000).

    Google Scholar 

  • Hanbury Brown R. and Twiss R.Q., A new type of interferometer for use in radio astronomy, Phil. Mag. 45, 663-682 (1954). Interferometry of the Intensity Fluctuations in Light. I. Basic Theory: The Correlation between Photons in Coherent Beams of Radiation, Proc. R. Soc. A242, 300-324 (1957). Interferometry of the Intensity Fluctuations in Light II. An Experimental Test of the Theory for Partially Coherent Light, Proc. R. Soc. A243, 291-319 (1958).

    Google Scholar 

  • Hopkins H.H., On the Diffraction Theory of Optical Images, Proc. R. Soc. A217, 408-432 (1953). The frequency response of optical systems, Proc. Phys. Soc. (London) Ser. B 69, 562-576 (1956).

    Google Scholar 

  • Hopkins H.H. and Baraham P.M., The Influence of the Condenser on Microscopic Resolution, Proc. Phys. Soc. B 63, 737-744 (1950).

    Google Scholar 

  • Kasdin N.J., Vanderbei R.J., Littman M.G., and Spergel D.N., Optimal one-dimensional apodizations and shaped pupils for planet finding coronagraphy, Appl. Optics 44, 1117-1128 (2005).

    Google Scholar 

  • Köhler A., Ein neues Beleuchtungsverfahren für mikrophotographische Zwecke, Zeits. f.wiss. Mikroskopie 10, 433-440 (1893); Beleuchtungsapparat für gleichmässige Beleuchtung mikroskopischer Objecte mit beliebigem, einfarbigem Licht, Zeits. f. wiss. Mikroskopie 16, 1-29 (1899).

    Google Scholar 

  • Loewen E.G. e Popov E., Diffraction Gratings and Applications, Marcel Dekker, Inc., New York (1997).

    Google Scholar 

  • Mandel L. and Wolf E., Coherence properties of optical fields, Rev. Mod. Phys. 37, 231-287 (1965).

    Google Scholar 

  • Mansuripur M., Certain computational aspects of vector diffraction problems, J. Opt. Soc. Am. A 6, 786-805 (1989). Classical Optics and its Applications, Cambridge Univ. Press, Cambridge (2002).

    Google Scholar 

  • Maréchal A. and Croce P., Un filtre de frequencies spatiales pour l’amelioration du contraste des images optiques, C.R. Acad. Sci. 127, 607-609 (1953).

    Google Scholar 

  • O’Neill E.L., Spatial filtering in optics, IRE Trans. Inf. Theory IT-2, 56-65 (1956).

    Google Scholar 

  • Oran Brigham E., The fast Fourier Transform, Prentice-Hall, Inc., Englewood Cliffs, N.J. (1974).

    Google Scholar 

  • Papoulis A., System and Transforms with Applications in Optics, McGraw-Hill, New York (1968).

    Google Scholar 

  • Porter A.B., On the diffraction theory of microscope vision, Phil. Mag. 11, 154-166 (1906).

    Google Scholar 

  • Rayleigh (Lord), On the manufacture and theory of diffraction gratings, Phil. Mag. Series 4, 47, 193-205 (1874). Investigation in optics, with special reference to the spectroscope, Philos. Mag. 8, 261-274, 403-411, 477-486 (1879), Philos. Mag. 9, 40-55 (1880).

    Google Scholar 

  • Reynolds G.O., DeVelis J.B., Parrent G.B. Jr, Thompson B.J., The new Physical Optics Notebook: Tutorial in Fourier Optics, SPIE Optical Engineering Press, Bellingam, and American Institute of Physics, New York (1989).

    Google Scholar 

  • Ronchi V., alla voce aberrazione, Enciclopedia della Scienza e della Tecnica, Mondadori ed., Milano (1963).

    Google Scholar 

  • Schuster A., The periodogram and its optical analogy, Proc. Roy. Soc. 77, 136-140 (1906).

    Google Scholar 

  • Shade O.H., Electro-optical characteristics of television systems, R. C. A. Rev. 9, 5-37, 245, 490, 653 (1948).

    Google Scholar 

  • Shafer A., Megil L., and Droppelman L., Optimization of Czerny-Turner spectrometers, J. Opt. Soc. Am. 54, 879-888 (1964).

    Google Scholar 

  • Shamir J., Optical Systems and Processes, SPIE Optical Engineering Press, Bellingam (1999).

    Google Scholar 

  • Shannon C.E., Communication in presence of Noise, Proc. IRE 37, 10-21 (1949).

    Google Scholar 

  • Sivoukhine D., Optique, MIR, Mosca (1984).

    Google Scholar 

  • Sparrow C.M., On spectroscopic resolving power, Astrophys. J. 44, 76-86 (1916).

    Google Scholar 

  • Stamnes J.J., Waves in Focal Regions, A. Hilger, Bristol (1986).

    Google Scholar 

  • Talbot H. F., Facts relating to optical science. No. IV, Philos. Mag. 9, 401-407 (1836).

    Google Scholar 

  • Tervo J., Setälä T., Friberg A.T., Theory of partially coherent electromagnetic fields in spacefrequency domain, J. Opt. Soc. Am. A 21, 2205-2215 (2004).

    Google Scholar 

  • Thompson B.J. and Wolf E., Two-beam interference with partially coherent light, J. Opt. Soc. Am. 47, 895-902 (1957).

    Google Scholar 

  • Toraldo di Francia G., The capacity of optical channels in the presence of noise, Opt. Acta 2, 5-8 (1955).

    Google Scholar 

  • Traub W.A. and Vanderbei R.J., Two-mirror apodization for high-contrast imaging, The Astrophysical J. 599, 695-701 (2003).

    Google Scholar 

  • van Cittert P.H., Die Wahrscheinliche Schwingungsverteilung in Einer von Einer Lichtquelle Direkt Oder Mittels Einer Linse Beleuchteten Ebene, Physica 1, 201-210 (1934). Kohaerenz-probleme, Physica 6, 1129-1138 (1939).

    Google Scholar 

  • VanderLugt A., Signal detection by complex spatial filtering, IEEE Trans. Inf. Theory, IT-10, 139-145 (1964). Optical Signal Processing, John Wiley & Sons Inc. ed., New York (1992).

    Google Scholar 

  • Van Vlek J.H. and Middleton D., A theoretical comparison of the visual, aural, and meter reception of pulsed signals in the presence of noise, J. Appl. Phys. 17, 940-971 (1946).

    Google Scholar 

  • Walther A., Radiometry and coherence, J. Opt. Soc. Am. 58, 1256-1259 (1968).

    Google Scholar 

  • Wiener N., Generalized harmonic analysis, Acta Math. 55, 117-258 (1930). Optics and the theory of stochastic processes, J. Opt. Soc. Am. 43, 225-228 (1953).

    Google Scholar 

  • Williams C.S., Becklund O.A., Introduction to the Optical Transfer Function, John Wiley & Sons ed., New York (1989).

    Google Scholar 

  • Wilson R.G., Fourier Series and Optical Transform Techniques in Contemporary Optics. An introduction, John Wiley & Sons ed., New York (1995).

    Google Scholar 

  • Weyl H., Ausbrietung elektromagnetischer Wellen über einem ebenen Leiter, Ann.Phys. Lpz. 60, 481-500 (1919).

    Google Scholar 

  • Whittaker E.T., On the functions which are represented by the expansions of the interpolation theory, Proc. Roy. Soc. Edinburgh, Sec. A 35, 181-194 (1915).

    Google Scholar 

  • Wolf E., A Macroscopic Theory of Interference and Diffraction of Light from Finite Sources. II. Fields with a Spectral Range of Arbitrary Width, Proc. Roy. Soc. A230, 246-265 (1955). Intensity fluctuations in stationary optical fields, Phil. Mag. 2, 351-354 (1957).

    Google Scholar 

  • Zadeh L.A. and Ragazzini J.R., Optimal filters for the detection of signal in noise, Proc. IRE 40, 1223-1231 (1952).

    Google Scholar 

  • Yu Francis T.S., Entropy and Information Optics, Marcel Dekker Inc. ed., New York (2000).

    Google Scholar 

  • Zernike F., Das phasenkontrastverfahren bei der mikroskopischen beobachtung, Z. Thec. Phys. 16, 454-457 (1935). The concept of degree of coherence and its application to optical problems, Physica 5, 785-795 (1938).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Giusfredi .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Italia

About this chapter

Cite this chapter

Giusfredi, G. (2015). Ottica di Fourier. In: Manuale di Ottica. Springer, Milano. https://doi.org/10.1007/978-88-470-5744-9_5

Download citation

Publish with us

Policies and ethics