Skip to main content

Renal Function from Fetus to Adulthood

  • Chapter
  • First Online:
  • 2057 Accesses

Abstract

The renal ontogeny can be considered complete after the 36th week of gestation. This chapter describes the stages of development of the kidney embryonic structures, provisional and definitive and the complex molecular basis regulating those phases and that represent the basis of congenital kidney disease. The renal endowment arising from the nephrogenesis process not only is the basis of anatomical and functional renal development but it seems to be of considerable importance for the occurrence of cardiovascular and kidney disease in the adulthood. It will also describe the basic principles of the anatomy of the kidney in the term infant. Renal function, both from the glomerular and tubular points of view, undergoes important changes between the intra-and extrauterine life: knowledge of renal function in fetal, neonatal, and childhood is of fundamental importance for the recognition of childhood kidney diseases but also for the management of drug therapies. A condition of considerable importance given its recent growth is that of preterm neonates, who may require a careful care and monitoring often also nephrological.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. Walker KA, Bertram JF (2011) Kidney development: core curriculum 2011. Am J Kidney Dis 57(6):948–958

    Article  PubMed  Google Scholar 

  2. Luyckx VA, Bertram JF, Brenner BM et al (2013) Effect of fetal and child health on kidney development and long-term risk of hypertension and kidney disease. Lancet 382(9888):273–283

    Article  PubMed  Google Scholar 

  3. Bertram JF, Cullen-McEwen LA, Egan GF et al (2013) Why and how we determine nephron number. Pediatr Nephrol. doi:10.1007/s00467-013-2600-y

    Google Scholar 

  4. Nelson (2002) XVI Trattato di Pediatria. Minerva Medica, Torino

    Google Scholar 

  5. 3°Convegno Pediatrico. Anomalie Congenite Renali; http://www.msditalia.it/altre/manuale/sez19/2612385d.html

  6. Sadler TW (2013) Embriologia medica di Langman, edizione italiana a cura di Raffaele De Caro, Sergio Galli. V ed Elsevier, Italia, p 392

    Google Scholar 

  7. Madsen K, Tinning AR, Marcussen N, Jensen BL (2013) Postnatal development of the renal medulla; role of the renin-angiotensin system. Acta Physiol (Oxf) 208:41–49

    Article  CAS  Google Scholar 

  8. Floege J, Johnson JR, Feehally J (2010) Renal anatomy in comprehensive clinical nephrology, 4th edn. Elsevier

    Google Scholar 

  9. Satchell SC, Braet F (2009) Glomerular endothelial cell fenestrations: an integral component of the glomerular filtration barrier. Am J Physiol Renal Physiol 296(5):F947–F956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Jefferson JA, Nelson PJ, Najafian B, Shankland SJ (2011) Podocyte disorders: core curriculum 2011. Am J Kidney Dis 58(4):666–677

    Article  PubMed Central  PubMed  Google Scholar 

  11. Young B, Heath JW (2001) Il sistema urinario in Atlante di istologia e anatomia microscopica del Wheater, IIIth edn. Casa Editrice Ambrosiana, Milano, pp 286–309

    Google Scholar 

  12. Schlöndorff D, Banas B (2009) The mesangial cell revisited: no cell is an island. J Am Soc Nephrol 20(6):1179–1187

    Article  PubMed  Google Scholar 

  13. Balboni GC et al (2000) Apparato Urinario. Anatomia Umana, vol 2. Ed. Ermes, Italia, pp 355–390

    Google Scholar 

  14. Christov M, Alper SL (2010) Tubular transport: core curriculum. Am J Kidney Dis 56:1202–1217

    Article  PubMed Central  PubMed  Google Scholar 

  15. Hunley TE, Kon V, Ichikawa J (2009) Glomerular circulation and function. In: Avner ED, Harmon WE, Niaudet P, Yoshikawa N (eds) Pediatric nephrology, 6th edn. Springer, Berlin, pp 31–64

    Chapter  Google Scholar 

  16. Vogt BA, Dell KM (2008) The kidney and urinary tract. In: Martin R, Fanaroff A, Walsh M, (eds) Fanaroff and Martin’s neonatal perinatal medicine, 9th edn. Elsevier, pp 1681–704

    Google Scholar 

  17. Guignard JP, Gouyon JB (2008) Glomerular filtration rate in neonates. In: Polin RA (ed) Nephrology and fluid electrolyte physiology. Saunders, Philadelphia, pp 79–96

    Google Scholar 

  18. Turner AJ, Brown RD, Carlstrom M et al (2008) Mechanisms of neonatal increase in glomerular filtration rate. Am J Physiol Regul Integr Comp Physiol 295:916–921

    Article  Google Scholar 

  19. Otukesh H, Hoseini R, Rahimzadeh N, Hosseini S (2012) Glomerular function in neonates. Iran J Kidney Dis 6:166–172

    PubMed  Google Scholar 

  20. Rose BD and Post T (2001). Clinical Physiology of Acid-Base and Electrolyte Disorders. McGraw Hill Professional, Boston

    Google Scholar 

  21. Perrone RD, Madias NE, Levey AS (1992) Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem 38(10):1933–1953

    CAS  PubMed  Google Scholar 

  22. Hood B, Attman PO, Ahlmen J, Jagenburg R (1971) Renal hemodynamics and limitations of creatinine clearance in determining filtration rate in glomerular disease. Scand J Urol Nephrol 5(2):154–161

    Article  CAS  PubMed  Google Scholar 

  23. Schwartz GJ, Brion LP, Spitzer A (1987) The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin N Am 34(3):571–590

    CAS  Google Scholar 

  24. Andersen TB (2012) Estimating renal function in children: a new GFR-model based on serum cystatin C and body cell mass. Dan Med J 59(7):B4486

    PubMed  Google Scholar 

  25. Tenstad O, Roald AB, Grubb A, Aukland K (1996) Renal handling of radiolabelled human cystatin C in the rat. Scand J Clin Lab Invest 56(5):409–414

    Article  CAS  PubMed  Google Scholar 

  26. Andersen TB, Eskild-Jensen A, Frøkiaer J, Brøchner-Mortensen J (2009) Measuring glomerular filtration rate in children; can cystatin C replace established methods? A review. Pediatr Nephrol 24(5):929–941

    Article  PubMed  Google Scholar 

  27. Bökenkamp A, Domanetzki M, Zinck R et al (1998) Reference values for cystatin C serum concentrations in children. Pediatr Nephrol 12(2):125–129

    Article  PubMed  Google Scholar 

  28. Finney H, Newman DJ, Thakkar H et al (2000) Reference ranges for plasma cystatin C and creatinine measurements in premature infants, neonates, and older children. Arch Dis Child 82(1):71–75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Helin I, Axenram M, Grubb A (1998) Serum cystatin C as a determinant of glomerular filtration rate in children. Clin Nephrol 49(4):221–225

    CAS  PubMed  Google Scholar 

  30. Piepsz A, Tondeur M, Ham H (2006) Revisiting normal (51)Cr-ethylenediaminetetraacetic acid clearance values in children. Eur J Nucl Med Mol Imaging 33(12):1477–1482

    Article  CAS  PubMed  Google Scholar 

  31. Brøchner-Mortensen J, Rohbrandt K, Lauritzen RB (1977) Precision of single injection [51Cr]EDTA plasma clearance and endogenous creatinine clearance determinations in children. Scand J Clin Lab Invest 37(7):625–629

    Article  PubMed  Google Scholar 

  32. Schwartz GJ, Haycock GB, Edelmann CM, Spitzer A (1976) A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 58(2):259–263

    CAS  PubMed  Google Scholar 

  33. Aufricht C, Balbisi A, Gerdov C et al (1995) Formula creatinine clearance as a substitute for 24-hour creatine clearance in children with kidney transplantation. Klin Padiatr 207(2):59–62

    Article  CAS  PubMed  Google Scholar 

  34. Bökenkamp A, Domanetzki M, Zinck R et al (1998) Cystatin C- a new marker of glomerular filtration rate in children independent of age and height. Pediatrics 101(5):875–881

    Article  PubMed  Google Scholar 

  35. Chehade H, Cachat F, Jannot AS et al (2013) Combined serum creatinine and cystatin C Schwartz formula predicts kidney function better than the combined CKD-EPI formula in children. Am J Nephrol 38(4):300–306

    Article  CAS  PubMed  Google Scholar 

  36. Chehade H, Cachat F, Jannot AS et al (2014) New combined serum creatinine and cystatin C quadratic formula for GFR assessment in children. Clin J Am Soc Nephrol 9(1):54–63

    Article  CAS  PubMed  Google Scholar 

  37. Quigley R (2012) Developmental changes in renal function. Curr Opin Pediatr 24(2):184–190

    Article  PubMed  Google Scholar 

  38. Schwartz GJ, Evan AP (1983) Development of solute transport in rabbit proximal tubule. I. HCO-3 and glucose absorption. Am J Physiol 245:F382–F390

    CAS  PubMed  Google Scholar 

  39. Baum M (1992) Developmental changes in rabbit juxtamedullary proximal convoluted tubule acidification. Pediatr Res 31:411–414

    Article  CAS  PubMed  Google Scholar 

  40. Quigley R, Baum M (1990) Developmental changes in rabbit juxtamedullary proximal convoluted tubule bicarbonate permeability. Pediatr Res 28:663–666

    Article  CAS  PubMed  Google Scholar 

  41. Becker AM, Zhang J, Goyal S et al (2007) Ontogeny of NHE8 in the rat proximal tubule. Am J Physiol Renal Physiol 293:F255–F261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Wilkins BH (1992) Renal function in sick very low birth weight infants. Arch Dis Child 67:1162–1165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Arant BS Jr (1978) Developmental patterns of renal functional maturation compared in the human neonate. J Pediatr 92:705–712

    Article  CAS  PubMed  Google Scholar 

  44. Johnson V, Spitzer A (1986) Renal reabsorption of phosphate during development: whole-kidney events. Am J Physiol 251:251–256

    Google Scholar 

  45. Baum M, Quigley R (2005) Maturation of rat proximal tubule chloride permeability. Am J Physiol Regul Integr Comp Physiol 289:1659–1664

    Article  Google Scholar 

  46. Heller H (1944) The renal function of newborn infants. J Physiol 102:429–440

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Edelmann CM Jr, Barnett HL (1960) Role of the kidney in water metabolism in young infants: physiologic and clinical considerations. J Pediatr 56:154–179

    Article  PubMed  Google Scholar 

  48. Polacek E, Vocel J, Neugebauerova L et al (1965) The osmotic concentrating ability in healthy infants and children. Arch Dis Child 40:291–295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Leake RD, Weitzman RE, Weinberg JA, Fisher DA (1979) Control of vasopressin secretion in the newborn lamb. Pediatr Res 13:257–260

    Article  CAS  PubMed  Google Scholar 

  50. Bonilla-Felix M, John-Phillip C (1994) Prostaglandins mediate the defect in AVP stimulated cAMP generation in immature collecting duct. Am J Physiol 267:F44–F48

    CAS  PubMed  Google Scholar 

  51. Bonilla-Felix M, Vehaskari VM, Hamm LL (1999) Water transport in the immature rabbit collecting duct. Pediatr Nephrol 13:103–107

    Article  CAS  PubMed  Google Scholar 

  52. Quigley R, Chakravarty S, Baum M (2004) Antidiuretic hormone resistance in the neonatal cortical collecting tubule is mediated in part by elevated phosphodiesterase activity. Am J Physiol Renal Physiol 286:F317–F322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Gallini F, Maggio L, Romagnoli C et al (2000) Progression of renal function in preterm neonates with gestational age <32 weeks. Pediatr Nephrol 15:119–124

    Article  CAS  PubMed  Google Scholar 

  54. Miall LS, Henderson MJ, Turner AJ et al (1999) Plasma creatinine rise dramatically in the first 48 hours of life in preterm infants. Pediatrics 104(6):e76

    Article  CAS  PubMed  Google Scholar 

  55. Matos P, Duarte-Silva M, Drukker A et al (1998) Creatinine reabsorption by the newborn rabbit kidney. Pediatr Res 44:639–641

    Article  CAS  PubMed  Google Scholar 

  56. Baum M, Quigley R (1995) Ontogeny of proximal tubule acidification. Kidney Int 48:1697–1704

    Article  CAS  PubMed  Google Scholar 

  57. Drukker A, Guignard GP (2002) Renal aspects of term and preterm infants: a selective update. Curr Opin Pediatr 14:175–182

    Article  PubMed  Google Scholar 

  58. Aperia A, Broberger O, Herin P, Zetterstrom R (1979) Sodium excretion in relation to sodium intake and aldosterone excretion in newborn preterm and full-term infants. Acta Paediatr Scand 68:813–817

    Article  CAS  PubMed  Google Scholar 

  59. Vehaskari VM (1994) Ontogeny of cortical collecting duct sodium transport. Am J Physiol 267:F49–F54

    CAS  PubMed  Google Scholar 

  60. Satlin LM, Palmer LG (1996) Apical Na conductance in maturing rabbit principal cell. Am J Physiol 270:F391–F397

    CAS  PubMed  Google Scholar 

  61. Vehaskari VM, Hempe JM, Manning J et al (1998) Developmental regulation of ENaC subunit mRNA levels in rat kidney. Am J Physiol 274:C1661–C1666

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Feliciangeli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Italia

About this chapter

Cite this chapter

La Manna, G., Capelli, I., Feliciangeli, G. (2015). Renal Function from Fetus to Adulthood. In: Lima, M., Manzoni, G. (eds) Pediatric Urology. Springer, Milano. https://doi.org/10.1007/978-88-470-5693-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5693-0_27

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5692-3

  • Online ISBN: 978-88-470-5693-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics