Skip to main content

Molecular and Genetic Aspects of Hemangiomas and Vascular Malformations

  • Chapter
Hemangiomas and Vascular Malformations

Abstract

Vascular anomalies are localized developmental defects of the vasculature. They include vascular tumors, primarily infantile hemangioma, and vascular malformations, which are categorized by the compartment they affect into capillary, lymphatic, venous, arterial, and combined malformations. While typically isolated and sporadic, hemangiomas and vascular malformations can occur as inherited traits or as part of certain syndromes. The identification of the genetic changes that cause disease holds out the promise of accurate (molecular) diagnosis, as well as insights into disease mechanisms and novel targets for improved therapy. The advances initially made were largely confined to rare, familial forms, with much less known about the bases of the common sporadic versions of vascular malformations. The shift toward the analysis of affected tissues in addition to blood samples has now proven to be key in improving our understanding, as it is becoming increasingly evident that somatic changes play an important role in these developmental disorders. In addition, rapidly evolving next-generation sequencing techniques allow for unprecedented throughput and depth of coverage, greatly increasing the ability to detect mosaic changes anywhere in the exome or genome. Expression profiling and functional studies, in vitro and in animal models, have in parallel begun to uncover how the aberrant genes affect the different cellular and molecular components of the vasculature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8:464–478

    CAS  PubMed  Google Scholar 

  2. Mulliken JB, Glowacki J (1982) Hemangiomas and vascular malformations in infants and children: a classification based on endothelial characteristics. Plast Reconstr Surg 69:412–422

    CAS  PubMed  Google Scholar 

  3. Walter JW, Blei F, Anderson JL, Orlow SJ, Speer MC, Marchuk DA (1999) Genetic mapping of a novel familial form of infantile hemangioma. Am J Med Genet 82:77–83

    CAS  PubMed  Google Scholar 

  4. Jinnin M, Medici D, Park L, Limaye N, Liu Y, Boscolo E, Bischoff J, Vikkula M, Boye E, Olsen BR (2008) Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nat Med 14:1236–1246

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Khan ZA, Boscolo E, Picard A, Psutka S, Melero-Martin JM, Bartch TC, Mulliken JB, Bischoff J (2008) Multipotential stem cells recapitulate human infantile hemangioma in immunodeficient mice. J Clin Invest 118:2592–2599

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Boon LM, Vikkula M (2007) Vascular malformations. In: Fitzpatrick’s dermatology in general medicine. McGraw-Hill Professional Publishing, Maidenhead

    Google Scholar 

  7. Boon LM, Vikkula M (2013) Molecular genetics of vascular malformations. In: Mulliken JB, Burrows PE, Fishman SJ, (eds) Mulliken and Young's Vascular Anomalies: Hemangiomas and Malformations. 2nd ed. New York, NY: Oxford University Press

    Google Scholar 

  8. Uebelhoer M, Boon LM, Vikkula M (2012) Vascular anomalies: from genetics toward models for therapeutic trials. Cold Spring Harb Perspect Med 2. doi:10.1101/cshperspect.a009688

  9. Eerola I, Boon LM, Mulliken JB, Burrows PE, Dompmartin A, Watanabe S, Vanwijck R, Vikkula M (2003) Capillary malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations. Am J Hum Genet 73:1240–1249

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Revencu N, Boon LM, Mulliken JB, Enjolras O, Cordisco MR, Burrows PE, Clapuyt P, Hammer F, Dubois J, Baselga E et al (2008) Parkes Weber syndrome, vein of Galen aneurysmal malformation, and other fast-flow vascular anomalies are caused by RASA1 mutations. Hum Mutat 29:959–965

    CAS  PubMed  Google Scholar 

  11. Revencu N, Boon LM, Mendola A, Cordisco MR, Dubois J, Clapuyt P, Hammer F, Amor DJ, Irvine AD, Baselga E et al (2013) RASA1 mutations and associated phenotypes in 68 families with capillary malformation-arteriovenous malformation. Hum Mutat 34:1632–1641

    CAS  PubMed  Google Scholar 

  12. Hu KQ, Settleman J (1997) Tandem SH2 binding sites mediate the RasGAP-RhoGAP interaction: a conformational mechanism for SH3 domain regulation. EMBO J 16:473–483

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Kulkarni SV, Gish G, van der Geer P, Henkemeyer M, Pawson T (2000) Role of p120 Ras-GAP in directed cell movement. J Cell Biol 149:457–470

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Yue Y, Lypowy J, Hedhli N, Abdellatif M (2004) Ras GTPase-activating protein binds to Akt and is required for its activation. J Biol Chem 279:12883–12889

    CAS  PubMed  Google Scholar 

  15. Henkemeyer M, Rossi DJ, Holmyard DP, Puri MC, Mbamalu G, Harpal K, Shih TS, Jacks T, Pawson T (1995) Vascular system defects and neuronal apoptosis in mice lacking ras GTPase-activating protein. Nature 377:695–701

    CAS  PubMed  Google Scholar 

  16. Burrows PE, Gonzalez-Garay ML, Rasmussen JC, Aldrich MB, Guilliod R, Maus EA, Fife CE, Kwon S, Lapinski PE, King PD et al (2013) Lymphatic abnormalities are associated with RASA1 gene mutations in mouse and man. Proc Natl Acad Sci U S A 110:8621–8626

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Revencu N, Boon LM, Dompmartin A, Rieu P, Busch WL, Dubois J, Forzano F, van Hagen JM, Halbach S, Kuechler A et al (2013) Germline mutations in RASA1 are not found in patients with Klippel-Trenaunay syndrome or capillary malformation with limb overgrowth. Mol Syndromol 4:173–178

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Whelan AJ, Watson MS, Porter FD, Steiner RD (1995) Klippel-Trenaunay-Weber syndrome associated with a 5:11 balanced translocation. Am J Med Genet 59:492–494

    CAS  PubMed  Google Scholar 

  19. Tian XL, Kadaba R, You SA, Liu M, Timur AA, Yang L, Chen Q, Szafranski P, Rao S, Wu L et al (2004) Identification of an angiogenic factor that when mutated causes susceptibility to Klippel-Trenaunay syndrome. Nature 427:640–645

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Chen D, Li L, Tu X, Yin Z, Wang Q (2013) Functional characterization of Klippel-Trenaunay syndrome gene AGGF1 identifies a novel angiogenic signaling pathway for specification of vein differentiation and angiogenesis during embryogenesis. Hum Mol Genet 22:963–976

    CAS  PubMed  Google Scholar 

  21. Kurek KC, Luks VL, Ayturk UM, Alomari AI, Fishman SJ, Spencer SA, Mulliken JB, Bowen ME, Yamamoto GL, Kozakewich HP et al (2012) Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am J Hum Genet 90:1108–1115

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Shirley MD, Tang H, Gallione CJ, Baugher JD, Frelin LP, Cohen B, North PE, Marchuk DA, Comi AM, Pevsner J (2013) Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl J Med 368:1971–1979

    PubMed Central  CAS  PubMed  Google Scholar 

  23. McDonell LM, Mirzaa GM, Alcantara D, Schwartzentruber J, Carter MT, Lee LJ, Clericuzio CL, Graham JM Jr, Morris-Rosendahl DJ, Polster T et al (2013) Mutations in STAMBP, encoding a deubiquitinating enzyme, cause microcephaly-capillary malformation syndrome. Nat Genet 45:556–562

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Laberge-le Couteulx S, Jung HH, Labauge P, Houtteville JP, Lescoat C, Cecillon M, Marechal E, Joutel A, Bach JF, Tournier-Lasserve E (1999) Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas. Nat Genet 23:189–193

    CAS  PubMed  Google Scholar 

  25. Sahoo T, Johnson EW, Thomas JW, Kuehl PM, Jones TL, Dokken CG, Touchman JW, Gallione CJ, Lee-Lin SQ, Kosofsky B et al (1999) Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral cavernous malformations (CCM1). Hum Mol Genet 8:2325–2333

    CAS  PubMed  Google Scholar 

  26. Liquori CL, Berg MJ, Siegel AM, Huang E, Zawistowski JS, Stoffer T, Verlaan D, Balogun F, Hughes L, Leedom TP et al (2003) Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations. Am J Hum Genet 73:1459–1464

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Bergametti F, Denier C, Labauge P, Arnoult M, Boetto S, Clanet M, Coubes P, Echenne B, Ibrahim R, Irthum B et al (2005) Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am J Hum Genet 76:42–51

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Liquori CL, Berg MJ, Squitieri F, Ottenbacher M, Sorlie M, Leedom TP, Cannella M, Maglione V, Ptacek L, Johnson EW et al (2006) Low frequency of PDCD10 mutations in a panel of CCM3 probands: potential for a fourth CCM locus. Hum Mutat 27:118

    PubMed  Google Scholar 

  29. Eerola I, Plate KH, Spiegel R, Boon LM, Mulliken JB, Vikkula M (2000) KRIT1 is mutated in hyperkeratotic cutaneous capillary-venous malformation associated with cerebral capillary malformation. Hum Mol Genet 9:1351–1355

    CAS  PubMed  Google Scholar 

  30. Sirvente J, Enjolras O, Wassef M, Tournier-Lasserve E, Labauge P (2009) Frequency and phenotypes of cutaneous vascular malformations in a consecutive series of 417 patients with familial cerebral cavernous malformations. J Eur Acad Dermatol Venereol 23:1066–1072

    CAS  PubMed  Google Scholar 

  31. Kehrer-Sawatzki H, Wilda M, Braun VM, Richter HP, Hameister H (2002) Mutation and expression analysis of the KRIT1 gene associated with cerebral cavernous malformations (CCM1). Acta Neuropathol 104:231–240

    CAS  PubMed  Google Scholar 

  32. Gault J, Shenkar R, Recksiek P, Awad IA (2005) Biallelic somatic and germ line CCM1 truncating mutations in a cerebral cavernous malformation lesion. Stroke 36:872–874

    PubMed  Google Scholar 

  33. Zawistowski JS, Stalheim L, Uhlik MT, Abell AN, Ancrile BB, Johnson GL, Marchuk DA (2005) CCM1 and CCM2 protein interactions in cell signaling: implications for cerebral cavernous malformations pathogenesis. Hum Mol Genet 14:2521–2531

    CAS  PubMed  Google Scholar 

  34. Voss K, Stahl S, Schleider E, Ullrich S, Nickel J, Mueller TD, Felbor U (2007) CCM3 interacts with CCM2 indicating common pathogenesis for cerebral cavernous malformations. Neurogenetics 8:249–256

    CAS  PubMed  Google Scholar 

  35. Zhang J, Clatterbuck RE, Rigamonti D, Chang DD, Dietz HC (2001) Interaction between krit1 and icap1alpha infers perturbation of integrin beta1-mediated angiogenesis in the pathogenesis of cerebral cavernous malformation. Hum Mol Genet 10:2953–2960

    CAS  PubMed  Google Scholar 

  36. Uhlik MT, Abell AN, Johnson NL, Sun W, Cuevas BD, Lobel-Rice KE, Horne EA, Dell’Acqua ML, Johnson GL (2003) Rac-MEKK3-MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock. Nat Cell Biol 5:1104–1110

    CAS  PubMed  Google Scholar 

  37. Serebriiskii I, Estojak J, Sonoda G, Testa JR, Golemis EA (1997) Association of Krev-1/rap1a with Krit1, a novel ankyrin repeat-containing protein encoded by a gene mapping to 7q21-22. Oncogene 15:1043–1049

    CAS  PubMed  Google Scholar 

  38. Glading A, Han J, Stockton RA, Ginsberg MH (2007) KRIT-1/CCM1 is a Rap1 effector that regulates endothelial cell cell junctions. J Cell Biol 179:247–254

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Wustehube J, Bartol A, Liebler SS, Brutsch R, Zhu Y, Felbor U, Sure U, Augustin HG, Fischer A (2010) Cerebral cavernous malformation protein CCM1 inhibits sprouting angiogenesis by activating DELTA-NOTCH signaling. Proc Natl Acad Sci U S A 107:12640–12645

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Borikova AL, Dibble CF, Sciaky N, Welch CM, Abell AN, Bencharit S, Johnson GL (2010) Rho kinase inhibition rescues the endothelial cell cerebral cavernous malformation phenotype. J Biol Chem 285:11760–11764

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Stockton RA, Shenkar R, Awad IA, Ginsberg MH (2010) Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity. J Exp Med 207:881–896

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Whitehead KJ, Plummer NW, Adams JA, Marchuk DA, Li DY (2004) Ccm1 is required for arterial morphogenesis: implications for the etiology of human cavernous malformations. Development 131:1437–1448

    CAS  PubMed  Google Scholar 

  43. Plummer NW, Gallione CJ, Srinivasan S, Zawistowski JS, Louis DN, Marchuk DA (2004) Loss of p53 sensitizes mice with a mutation in Ccm1 (KRIT1) to development of cerebral vascular malformations. Am J Pathol 165:1509–1518

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Plummer NW, Squire TL, Srinivasan S, Huang E, Zawistowski JS, Matsunami H, Hale LP, Marchuk DA (2006) Neuronal expression of the Ccm2 gene in a new mouse model of cerebral cavernous malformations. Mamm Genome 17:119–128

    CAS  PubMed  Google Scholar 

  45. Hogan BM, Bussmann J, Wolburg H, Schulte-Merker S (2008) ccm1 cell autonomously regulates endothelial cellular morphogenesis and vascular tubulogenesis in zebrafish. Hum Mol Genet 17:2424–2432

    CAS  PubMed  Google Scholar 

  46. Voss K, Stahl S, Hogan BM, Reinders J, Schleider E, Schulte-Merker S, Felbor U (2009) Functional analyses of human and zebrafish 18-amino acid in-frame deletion pave the way for domain mapping of the cerebral cavernous malformation 3 protein. Hum Mutat 30:1003–1011

    CAS  PubMed  Google Scholar 

  47. Boon LM, Mulliken JB, Enjolras O, Vikkula M (2004) Glomuvenous malformation (glomangioma) and venous malformation: distinct clinicopathologic and genetic entities. Arch Dermatol 140:971–976

    PubMed  Google Scholar 

  48. Dompmartin A, Vikkula M, Boon LM (2010) Venous malformation: update on aetiopathogenesis, diagnosis and management. Phlebology 25:224–235

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Brouillard P, Boon LM, Mulliken JB, Enjolras O, Ghassibe M, Warman ML, Tan OT, Olsen BR, Vikkula M (2002) Mutations in a novel factor, glomulin, are responsible for glomuvenous malformations (“glomangiomas”). Am J Hum Genet 70:866–874

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Brouillard P, Ghassibe M, Penington A, Boon LM, Dompmartin A, Temple IK, Cordisco M, Adams D, Piette F, Harper JI et al (2005) Four common glomulin mutations cause two thirds of glomuvenous malformations (“familial glomangiomas”): evidence for a founder effect. J Med Genet 42:e13

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Brouillard P, Boon LM, Revencu N, Berg J, Dompmartin A, Dubois J, Garzon M, Holden S, Kangesu L, Labreze C et al (2013) Genotypes and phenotypes of 162 families with a glomulin mutation. Mol Syndromol 4:157–164

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Amyere M, Aerts V, Brouillard P, McIntyre BA, Duhoux FP, Wassef M, Enjolras O, Mulliken JB, Devuyst O, Antoine-Poirel H et al (2013) Somatic uniparental isodisomy explains multifocality of glomuvenous malformations. Am J Hum Genet 92:188–196

    PubMed Central  CAS  PubMed  Google Scholar 

  53. McIntyre BA, Brouillard P, Aerts V, Gutierrez-Roelens I, Vikkula M (2004) Glomulin is predominantly expressed in vascular smooth muscle cells in the embryonic and adult mouse. Gene Expr Patterns 4:351–358

    CAS  PubMed  Google Scholar 

  54. Chambraud B, Radanyi C, Camonis JH, Shazand K, Rajkowski K, Baulieu EE (1996) FAP48, a new protein that forms specific complexes with both immunophilins FKBP59 and FKBP12. Prevention by the immunosuppressant drugs FK506 and rapamycin. J Biol Chem 271:32923–32929

    CAS  PubMed  Google Scholar 

  55. Chen YG, Liu F, Massague J (1997) Mechanism of TGFbeta receptor inhibition by FKBP12. EMBO J 16:3866–3876

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Grisendi S, Chambraud B, Gout I, Comoglio PM, Crepaldi T (2001) Ligand-regulated binding of FAP68 to the hepatocyte growth factor receptor. J Biol Chem 276:46632–46638

    CAS  PubMed  Google Scholar 

  57. Taher TE, Derksen PW, de Boer OJ, Spaargaren M, Teeling P, van der Wal AC, Pals ST (2002) Hepatocyte growth factor triggers signaling cascades mediating vascular smooth muscle cell migration. Biochem Biophys Res Commun 298:80–86

    CAS  PubMed  Google Scholar 

  58. Harrison P, Bradley L, Bomford A (2000) Mechanism of regulation of HGF/SF gene expression in fibroblasts by TGF-beta1. Biochem Biophys Res Commun 271:203–211

    CAS  PubMed  Google Scholar 

  59. Zhang X, Yang J, Li Y, Liu Y (2005) Both Sp1 and Smad participate in mediating TGF-beta1-induced HGF receptor expression in renal epithelial cells. Am J Physiol Renal Physiol 288:F16–F26

    CAS  PubMed  Google Scholar 

  60. Arai T, Kasper JS, Skaar JR, Ali SH, Takahashi C, DeCaprio JA (2003) Targeted disruption of p185/Cul7 gene results in abnormal vascular morphogenesis. Proc Natl Acad Sci U S A 100:9855–9860

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Duda DM, Olszewski JL, Tron AE, Hammel M, Lambert LJ, Waddell MB, Mittag T, DeCaprio JA, Schulman BA (2012) Structure of a glomulin-RBX1-CUL1 complex: inhibition of a RING E3 ligase through masking of its E2-binding surface. Mol Cell 47:371–382

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Tron AE, Arai T, Duda DM, Kuwabara H, Olszewski JL, Fujiwara Y, Bahamon BN, Signoretti S, Schulman BA, DeCaprio JA (2012) The glomuvenous malformation protein Glomulin binds Rbx1 and regulates cullin RING ligase-mediated turnover of Fbw7. Mol Cell 46:67–78

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Dompmartin A, Acher A, Thibon P, Tourbach S, Hermans C, Deneys V, Pocock B, Lequerrec A, Labbe D, Barrellier MT et al (2008) Association of localized intravascular coagulopathy with venous malformations. Arch Dermatol 144:873–877

    PubMed  Google Scholar 

  64. Dompmartin A, Ballieux F, Thibon P, Lequerrec A, Hermans C, Clapuyt P, Barrellier MT, Hammer F, Labbe D, Vikkula M et al (2009) Elevated D-dimer level in the differential diagnosis of venous malformations. Arch Dermatol 145:1239–1244

    CAS  PubMed  Google Scholar 

  65. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180

    CAS  PubMed  Google Scholar 

  66. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    CAS  PubMed  Google Scholar 

  67. Valenzuela DM, Griffiths JA, Rojas J, Aldrich TH, Jones PF, Zhou H, McClain J, Copeland NG, Gilbert DJ, Jenkins NA et al (1999) Angiopoietins 3 and 4: diverging gene counterparts in mice and humans. Proc Natl Acad Sci U S A 96:1904–1909

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Vikkula M, Boon LM, Carraway KL 3rd, Calvert JT, Diamonti AJ, Goumnerov B, Pasyk KA, Marchuk DA, Warman ML, Cantley LC et al (1996) Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell 87:1181–1190

    CAS  PubMed  Google Scholar 

  69. Calvert JT, Riney TJ, Kontos CD, Cha EH, Prieto VG, Shea CR, Berg JN, Nevin NC, Simpson SA, Pasyk KA et al (1999) Allelic and locus heterogeneity in inherited venous malformations. Hum Mol Genet 8:1279–1289

    CAS  PubMed  Google Scholar 

  70. Wouters V, Limaye N, Uebelhoer M, Irrthum A, Boon LM, Mulliken JB, Enjolras O, Baselga E, Berg J, Dompmartin A et al (2010) Hereditary cutaneomucosal venous malformations are caused by TIE2 mutations with widely variable hyper-phosphorylating effects. Eur J Hum Genet 18:414–420

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Limaye N, Uebelhoer M, Boon LM, Vikkula M. TIE2 and cutaneomucosal venous malformation. In: Epstein CJ, Erickson RP, Wynshaw-Boris A (ed) Inborn errors of development. Oxford University Press, Oxford (in press)

    Google Scholar 

  72. Hansen TM, Singh H, Tahir TA, Brindle NP (2010) Effects of angiopoietins-1 and −2 on the receptor tyrosine kinase Tie2 are differentially regulated at the endothelial cell surface. Cell Signal 22:527–532

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Seegar TC, Eller B, Tzvetkova-Robev D, Kolev MV, Henderson SC, Nikolov DB, Barton WA (2010) Tie1-Tie2 interactions mediate functional differences between angiopoietin ligands. Mol Cell 37:643–655

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Dumont DJ, Gradwohl G, Fong GH, Puri MC, Gertsenstein M, Auerbach A, Breitman ML (1994) Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 8:1897–1909

    CAS  PubMed  Google Scholar 

  75. Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y (1995) Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376:70–74

    CAS  PubMed  Google Scholar 

  76. Kontos CD, Stauffer TP, Yang WP, York JD, Huang L, Blanar MA, Meyer T, Peters KG (1998) Tyrosine 1101 of Tie2 is the major site of association of p85 and is required for activation of phosphatidylinositol 3-kinase and Akt. Mol Cell Biol 18:4131–4140

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Jones N, Master Z, Jones J, Bouchard D, Gunji Y, Sasaki H, Daly R, Alitalo K, Dumont DJ (1999) Identification of Tek/Tie2 binding partners. Binding to a multifunctional docking site mediates cell survival and migration. J Biol Chem 274:30896–30905

    CAS  PubMed  Google Scholar 

  78. Jones N, Chen SH, Sturk C, Master Z, Tran J, Kerbel RS, Dumont DJ (2003) A unique autophosphorylation site on Tie2/Tek mediates Dok-R phosphotyrosine binding domain binding and function. Mol Cell Biol 23:2658–2668

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Hughes DP, Marron MB, Brindle NP (2003) The antiinflammatory endothelial tyrosine kinase Tie2 interacts with a novel nuclear factor-kappaB inhibitor ABIN-2. Circ Res 92:630–636

    CAS  PubMed  Google Scholar 

  80. Shu W, Lin Y, Hua R, Luo Y, He N, Fang L, Tan J, Lu J, Hu Z, Yuan Z (2012) Cutaneomucosal venous malformations are linked to the TIE2 mutation in a large Chinese family. Exp Dermatol 21:456–457

    CAS  PubMed  Google Scholar 

  81. Morris PN, Dunmore BJ, Brindle NP (2006) Mutant Tie2 causing venous malformation signals through Shc. Biochem Biophys Res Commun 346:335–338

    CAS  PubMed  Google Scholar 

  82. Morris PN, Dunmore BJ, Tadros A, Marchuk DA, Darland DC, D’Amore PA, Brindle NP (2005) Functional analysis of a mutant form of the receptor tyrosine kinase Tie2 causing venous malformations. J Mol Med 83:58–63

    CAS  PubMed  Google Scholar 

  83. Hu HT, Huang YH, Chang YA, Lee CK, Jiang MJ, Wu LW (2008) Tie2-R849W mutant in venous malformations chronically activates a functional STAT1 to modulate gene expression. J Invest Dermatol 128:2325–2333

    CAS  PubMed  Google Scholar 

  84. Huang YH, Wu MP, Pan SC, Su WC, Chen YW, Wu LW (2013) STAT1 activation by venous malformations mutant Tie2-R849W antagonizes VEGF-A-mediated angiogenic response partly via reduced bFGF production. Angiogenesis 16:207–222

    CAS  PubMed  Google Scholar 

  85. Limaye N, Wouters V, Uebelhoer M, Tuominen M, Wirkkala R, Mulliken JB, Eklund L, Boon LM, Vikkula M (2009) Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations. Nat Genet 41:118–124

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Soblet J, Limaye N, Uebelhoer M, Boon LM, Vikkula M (2013) Variable somatic TIE2 mutations in half of sporadic venous malformations. Mol Syndromol 4:179–183

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Uebelhoer M, Natynki M, Kangas J, Mendola A, Nguyen HL, Soblet J, Godfraind C, Boon LM, Eklund L, Limaye N et al (2013) Venous malformation-causative TIE2 mutations mediate an AKT-dependent decrease in PDGFB. Hum Mol Genet 22:3438–3448

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Soblet J, Kangas J, Nätynki M, Mendola A, Helaers R, Uebelhoer M, Kaakinen M, Cordisco M, Dompmartin A, Enjolras O et al. Somatic Gain-of-function TIE2 Mutations cause Blue Rubber Bleb Nevus Syndrome and Multifocal Sporadic Venous Malformation. In Preparation.

    Google Scholar 

  89. Mendola A, Schlögel MJ, Ghalamkarpour A, Irrthum A, Nguyen HL, Fastré E, Bygum A, van der Vleuten C, Fagerberg C, Baselga E et al (2013) Mutations in the VEGFR3 signaling pathway explain 36% of familial lymphedema. Mol Syndromol 4:257–266

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Irrthum A, Karkkainen MJ, Devriendt K, Alitalo K, Vikkula M (2000) Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. Am J Hum Genet 67:295–301

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Karkkainen MJ, Ferrell RE, Lawrence EC, Kimak MA, Levinson KL, McTigue MA, Alitalo K, Finegold DN (2000) Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat Genet 25:153–159

    CAS  PubMed  Google Scholar 

  92. Ghalamkarpour A, Morlot S, Raas-Rothschild A, Utkus A, Mulliken JB, Boon LM, Vikkula M (2006) Hereditary lymphedema type I associated with VEGFR3 mutation: the first de novo case and atypical presentations. Clin Genet 70:330–335

    CAS  PubMed  Google Scholar 

  93. Ghalamkarpour A, Holnthoner W, Saharinen P, Boon LM, Mulliken JB, Alitalo K, Vikkula M (2009) Recessive primary congenital lymphoedema caused by a VEGFR3 mutation. J Med Genet 46:399–404

    CAS  PubMed  Google Scholar 

  94. Karkkainen MJ, Saaristo A, Jussila L, Karila KA, Lawrence EC, Pajusola K, Bueler H, Eichmann A, Kauppinen R, Kettunen MI et al (2001) A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci U S A 98:12677–12682

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T, Pajusola K, Breitman M, Alitalo K (1998) Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282:946–949

    CAS  PubMed  Google Scholar 

  96. Gordon K, Schulte D, Brice G, Simpson MA, Roukens MG, van Impel A, Connell F, Kalidas K, Jeffery S, Mortimer PS et al (2013) Mutation in vascular endothelial growth factor-C, a ligand for vascular endothelial growth factor receptor-3, is associated with autosomal dominant milroy-like primary lymphedema. Circ Res 112:956–960

    CAS  PubMed  Google Scholar 

  97. Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV, Jeltsch M, Jackson DG, Talikka M, Rauvala H et al (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5:74–80

    CAS  PubMed  Google Scholar 

  98. Dellinger MT, Hunter RJ, Bernas MJ, Witte MH, Erickson RP (2007) Chy-3 mice are Vegfc haploinsufficient and exhibit defective dermal superficial to deep lymphatic transition and dermal lymphatic hypoplasia. Dev Dyn 236:2346–2355

    CAS  PubMed  Google Scholar 

  99. Au AC, Hernandez PA, Lieber E, Nadroo AM, Shen YM, Kelley KA, Gelb BD, Diaz GA (2010) Protein tyrosine phosphatase PTPN14 is a regulator of lymphatic function and choanal development in humans. Am J Hum Genet 87:436–444

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Alders M, Hogan BM, Gjini E, Salehi F, Al-Gazali L, Hennekam EA, Holmberg EE, Mannens MM, Mulder MF, Offerhaus GJ et al (2009) Mutations in CCBE1 cause generalized lymph vessel dysplasia in humans. Nat Genet 41:1272–1274

    CAS  PubMed  Google Scholar 

  101. Connell F, Kalidas K, Ostergaard P, Brice G, Homfray T, Roberts L, Bunyan DJ, Mitton S, Mansour S, Mortimer P et al (2010) Linkage and sequence analysis indicate that CCBE1 is mutated in recessively inherited generalised lymphatic dysplasia. Hum Genet 127:231–241

    PubMed  Google Scholar 

  102. Alders M, Mendola A, Ades L, Al Gazali L, Bellini C, Dallapiccola B, Edery P, Frank U, Hornshuh F, Huisman SA et al (2013) Evaluation of clinical manifestations in patients with severe lymphedema with and without CCBE1 mutations. Mol Syndromol 4:107–113

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Bos FL, Caunt M, Peterson-Maduro J, Planas-Paz L, Kowalski J, Karpanen T, van Impel A, Tong R, Ernst JA, Korving J et al (2011) CCBE1 is essential for mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Circ Res 109:486–491

    CAS  PubMed  Google Scholar 

  104. Hogan BM, Bos FL, Bussmann J, Witte M, Chi NC, Duckers HJ, Schulte-Merker S (2009) Ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nat Genet 41:396–398

    CAS  PubMed  Google Scholar 

  105. Fang J, Dagenais SL, Erickson RP, Arlt MF, Glynn MW, Gorski JL, Seaver LH, Glover TW (2000) Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. Am J Hum Genet 67:1382–1388

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Bell R, Brice G, Child AH, Murday VA, Mansour S, Sandy CJ, Collin JR, Brady AF, Callen DF, Burnand K et al (2001) Analysis of lymphoedema-distichiasis families for FOXC2 mutations reveals small insertions and deletions throughout the gene. Hum Genet 108:546–551

    CAS  PubMed  Google Scholar 

  107. Finegold DN, Kimak MA, Lawrence EC, Levinson KL, Cherniske EM, Pober BR, Dunlap JW, Ferrell RE (2001) Truncating mutations in FOXC2 cause multiple lymphedema syndromes. Hum Mol Genet 10:1185–1189

    CAS  PubMed  Google Scholar 

  108. Petrova TV, Karpanen T, Norrmén C, Mellor R, Tamakoshi T, Finegold D, Ferrell R, Kerjaschki D, Mortimer P, Ylä-Herttuala S et al (2004) Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med 10(9):974–981

    Google Scholar 

  109. Irrthum A, Devriendt K, Chitayat D, Matthijs G, Glade C, Steijlen PM, Fryns JP, Van Steensel MA, Vikkula M (2003) Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia. Am J Hum Genet 72:1470–1478

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Moalem S, Brouillard P, Kuypers D, Legius E, Harvey E, Taylor G, Francois M, Vikkula M, Chitayat D (2014) Hypotrichosis-lymphedema-telangiectasia-renal defect associated with a truncating mutations in the SOX18 gene. Clin Genet (Epub ahead of print) doi:10.1111/cge.12388

  111. Pennisi D, Gardner J, Chambers D, Hosking B, Peters J, Muscat G, Abbott C, Koopman P (2000) Mutations in Sox18 underlie cardiovascular and hair follicle defects in ragged mice. Nat Genet 24:434–437

    CAS  PubMed  Google Scholar 

  112. James K, Hosking B, Gardner J, Muscat GE, Koopman P (2003) Sox18 mutations in the ragged mouse alleles ragged-like and opossum. Genesis 36:1–6

    CAS  PubMed  Google Scholar 

  113. Ostergaard P, Simpson MA, Connell FC, Steward CG, Brice G, Woollard WJ, Dafou D, Kilo T, Smithson S, Lunt P et al (2011) Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome). Nat Genet 43:929–931

    CAS  PubMed  Google Scholar 

  114. Kazenwadel J, Secker GA, Liu YJ, Rosenfeld JA, Wildin RS, Cuellar-Rodriguez J, Hsu AP, Dyack S, Fernandez CV, Chong CE et al (2012) Loss-of-function germline GATA2 mutations in patients with MDS/AML or MonoMAC syndrome and primary lymphedema reveal a key role for GATA2 in the lymphatic vasculature. Blood 119:1283–1291

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Tsai FY, Keller G, Kuo FC, Weiss M, Chen J, Rosenblatt M, Alt FW, Orkin SH (1994) An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371:221–226

    CAS  PubMed  Google Scholar 

  116. Ferrell RE, Baty CJ, Kimak MA, Karlsson JM, Lawrence EC, Franke-Snyder M, Meriney SD, Feingold E, Finegold DN (2010) GJC2 missense mutations cause human lymphedema. Am J Hum Genet 86:943–948

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Ostergaard P, Simpson MA, Brice G, Mansour S, Connell FC, Onoufriadis A, Child AH, Hwang J, Kalidas K, Mortimer PS et al (2011) Rapid identification of mutations in GJC2 in primary lymphoedema using whole exome sequencing combined with linkage analysis with delineation of the phenotype. J Med Genet 48:251–255

    CAS  PubMed  Google Scholar 

  118. Brice G, Ostergaard P, Jeffery S, Gordon K, Mortimer PS, Mansour S (2013) A novel mutation in GJA1 causing oculodentodigital syndrome and primary lymphoedema in a three generation family. Clin Genet 84:378–381

    CAS  PubMed  Google Scholar 

  119. Ostergaard P, Simpson MA, Mendola A, Vasudevan P, Connell FC, van Impel A, Moore AT, Loeys BL, Ghalamkarpour A, Onoufriadis A et al (2012) Mutations in KIF11 cause autosomal-dominant microcephaly variably associated with congenital lymphedema and chorioretinopathy. Am J Hum Genet 90:356–362

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Chauviere M, Kress C, Kress M (2008) Disruption of the mitotic kinesin Eg5 gene (Knsl1) results in early embryonic lethality. Biochem Biophys Res Commun 372:513–519

    CAS  PubMed  Google Scholar 

  121. Smahi A, Courtois G, Vabres P, Yamaoka S, Heuertz S, Munnich A, Israel A, Heiss NS, Klauck SM, Kioschis P et al (2000) Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature 405:466–472

    CAS  PubMed  Google Scholar 

  122. Doffinger R, Smahi A, Bessia C, Geissmann F, Feinberg J, Durandy A, Bodemer C, Kenwrick S, Dupuis-Girod S, Blanche S et al (2001) X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet 27:277–285

    CAS  PubMed  Google Scholar 

  123. Roberts CM, Angus JE, Leach IH, McDermott EM, Walker DA, Ravenscroft JC (2010) A novel NEMO gene mutation causing osteopetrosis, lymphoedema, hypohidrotic ectodermal dysplasia and immunodeficiency (OL-HED-ID). Eur J Pediatr 169:1403–1407

    PubMed  Google Scholar 

  124. Carlberg VM, Lofgren SM, Mann JA, Austin JP, Nolt D, Shereck EB, Davila-Saldana B, Zonana J, Krol AL (2013) Hypohidrotic ectodermal dysplasia, osteopetrosis, lymphedema, and immunodeficiency in an infant with multiple opportunistic infections. Pediatr Dermatol. Epub ahead of print. doi:10.1111/pde.12103

  125. Schmidt-Supprian M, Bloch W, Courtois G, Addicks K, Israel A, Rajewsky K, Pasparakis M (2000) NEMO/IKK gamma-deficient mice model incontinentia pigmenti. Mol Cell 5:981–992

    CAS  PubMed  Google Scholar 

  126. Bull LN, Roche E, Song EJ, Pedersen J, Knisely AS, van Der Hagen CB, Eiklid K, Aagenaes O, Freimer NB (2000) Mapping of the locus for cholestasis-lymphedema syndrome (Aagenaes syndrome) to a 6.6-cM interval on chromosome 15q. Am J Hum Genet 67:994–999

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Atri D, Larrivée B, Eichmann A, Simons M (2013) Endothelial signaling and the molecular basis of arteriovenous malformation. Cell Mol Life Sci 71(5):867–883

    Google Scholar 

  128. Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, Tagle DA, Smith S, Uziel T, Sfez S et al (1995) A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268:1749–1753

    CAS  PubMed  Google Scholar 

  129. McAllister KA, Grogg KM, Johnson DW, Gallione CJ, Baldwin MA, Jackson CE, Helmbold EA, Markel DS, McKinnon WC, Murrell J et al (1994) Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 8:345–351

    CAS  PubMed  Google Scholar 

  130. Johnson DW, Berg JN, Baldwin MA, Gallione CJ, Marondel I, Yoon SJ, Stenzel TT, Speer M, Pericak-Vance MA, Diamond A et al (1996) Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 13:189–195

    CAS  PubMed  Google Scholar 

  131. Govani FS, Shovlin CL (2009) Hereditary haemorrhagic telangiectasia: a clinical and scientific review. Eur J Hum Genet 17:860–871

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Cole SG, Begbie ME, Wallace GM, Shovlin CL (2005) A new locus for hereditary haemorrhagic telangiectasia (HHT3) maps to chromosome 5. J Med Genet 42:577–582

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Bayrak-Toydemir P, McDonald J, Akarsu N, Toydemir RM, Calderon F, Tuncali T, Tang W, Miller F, Mao R (2006) A fourth locus for hereditary hemorrhagic telangiectasia maps to chromosome 7. Am J Med Genet A 140:2155–2162

    PubMed  Google Scholar 

  134. Revencu N, Boon LM, Vikkula M (2008) Arteriovenous malformation in mice and men. In: Marmé D, Fusenig N (eds) Tumor angiogenesis: mechanisms and cancer therapy. Springer, Heidelberg, pp 363–374

    Google Scholar 

  135. Gallione CJ, Repetto GM, Legius E, Rustgi AK, Schelley SL, Tejpar S, Mitchell G, Drouin E, Westermann CJ, Marchuk DA (2004) A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet 363:852–859

    CAS  PubMed  Google Scholar 

  136. Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P (2002) Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J 21:1743–1753

    PubMed Central  CAS  PubMed  Google Scholar 

  137. David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S (2007) Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 109:1953–1961

    CAS  PubMed  Google Scholar 

  138. Barbara NP, Wrana JL, Letarte M (1999) Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem 274:584–594

    CAS  PubMed  Google Scholar 

  139. Lebrin F, Goumans MJ, Jonker L, Carvalho RL, Valdimarsdottir G, Thorikay M, Mummery C, Arthur HM, ten Dijke P (2004) Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. EMBO J 23:4018–4028

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Lagna G, Hata A, Hemmati-Brivanlou A, Massague J (1996) Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Nature 383:832–836

    CAS  PubMed  Google Scholar 

  141. Zhang Y, Musci T, Derynck R (1997) The tumor suppressor Smad4/DPC 4 as a central mediator of Smad function. Curr Biol 7:270–276

    PubMed  Google Scholar 

  142. Bourdeau A, Dumont DJ, Letarte M (1999) A murine model of hereditary hemorrhagic telangiectasia. J Clin Invest 104:1343–1351

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten Dijke P, Kim S et al (2000) Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci U S A 97:2626–2631

    PubMed Central  CAS  PubMed  Google Scholar 

  144. Bourdeau A, Faughnan ME, Letarte M (2000) Endoglin-deficient mice, a unique model to study hereditary hemorrhagic telangiectasia. Trends Cardiovasc Med 10:279–285

    CAS  PubMed  Google Scholar 

  145. Sirard C, de la Pompa JL, Elia A, Itie A, Mirtsos C, Cheung A, Hahn S, Wakeham A, Schwartz L, Kern SE et al (1998) The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev 12:107–119

    PubMed Central  CAS  PubMed  Google Scholar 

  146. Wooderchak-Donahue WL, McDonald J, O’Fallon B, Upton PD, Li W, Roman BL, Young S, Plant P, Fulop GT, Langa C et al (2013) BMP9 mutations cause a vascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia. Am J Hum Genet 93:530–537

    PubMed Central  CAS  PubMed  Google Scholar 

  147. Mester J, Eng C (2013) When overgrowth bumps into cancer: the PTEN-opathies. Am J Med Genet C Semin Med Genet 163C:114–121

    PubMed  Google Scholar 

  148. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, Ruland J, Penninger JM, Siderovski DP, Mak TW (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95:29–39

    CAS  PubMed  Google Scholar 

  149. Hamada K, Sasaki T, Koni PA, Natsui M, Kishimoto H, Sasaki J, Yajima N, Horie Y, Hasegawa G, Naito M et al (2005) The PTEN/PI3K pathway governs normal vascular development and tumor angiogenesis. Genes Dev 19:2054–2065

    PubMed Central  CAS  PubMed  Google Scholar 

  150. Orloff MS, He X, Peterson C, Chen F, Chen JL, Mester JL, Eng C (2013) Germline PIK3CA and AKT1 mutations in Cowden and Cowden-like syndromes. Am J Hum Genet 92:76–80

    PubMed Central  CAS  PubMed  Google Scholar 

  151. Lindhurst MJ, Sapp JC, Teer JK, Johnston JJ, Finn EM, Peters K, Turner J, Cannons JL, Bick D, Blakemore L et al (2011) A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N Engl J Med 365:611–619

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miikka Vikkula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Italia

About this chapter

Cite this chapter

Limaye, N., Vikkula, M. (2015). Molecular and Genetic Aspects of Hemangiomas and Vascular Malformations. In: Mattassi, R., Loose, D., Vaghi, M. (eds) Hemangiomas and Vascular Malformations. Springer, Milano. https://doi.org/10.1007/978-88-470-5673-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5673-2_2

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5672-5

  • Online ISBN: 978-88-470-5673-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics