Skip to main content

Abstract

In developed countries vascular diseases are the leading cause of mortality. With an incidence of up to 5 %, maldevelopment of vessels (mainly hemangiomas, but also lymphangiomas and vascular malformations) is the number one developmental failure observed in newborns and even more often in premature infants. In recent decades, our knowledge of the molecular genetic and epigenetic control of the development of blood vessels (angiogenesis, hemangiogenesis) and lymphatics (lymphangiogenesis) has increased considerably, raising the hope to identify new therapeutic targets. Here we review the cellular and molecular mechanisms of embryonic angiogenesis and lymphangiogenesis in the human and in model organisms. The focus lies on the endothelial and mural cells (pericytes, smooth muscle cells, macrophages), growth factors, and receptors that control their development, proliferation, remodeling, maintenance, regression, and differentiation. Our expanding knowledge of the molecular control of endothelial and mural cell development justifies expanded functional and clinical studies in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilting J (2002) Integrated anatomy of the vascular system. In: Lanzer P, Topol EJ (eds) Panvascular medicine. Springer, Heidelberg, pp 50–75

    Google Scholar 

  2. Witte MH, Jones K, Wilting J, Dictor M, Selg M, McHale N, Gershenwald JE, Jackson D (2006) Structure-function relationships in the lymphatic system and implications for cancer biology. Cancer Metastasis Rev 25:159–184

    PubMed  Google Scholar 

  3. Bazigou E, Makinen T (2013) Flow control in our vessels: vascular valves make sure there is no way back. Cell Mol Life Sci 70:1055–1066

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Britten S, Soenksen DM, Bustillo M, Coulam CB (1994) Very early (24–56 days from the last menstrual period) embryonic heart rate in normal pregnancies. Hum Reprod 9:2424–2426

    CAS  PubMed  Google Scholar 

  5. Wisser J, Dirschedl P (1994) Embryonic heart rate in dated human embryos. Early Hum Dev 37:107–115

    CAS  PubMed  Google Scholar 

  6. Coulam CB, Britten S, Soenksen DM (1996) Early (34–56 days from last menstrual period) ultrasonographic measurements in normal pregnancies. Hum Reprod 11:1771–1774

    CAS  PubMed  Google Scholar 

  7. Eternod ACF (1898) Premiers stades de la circulation sanguine dans l’oeuf et l’embryon humains. Anat Anz 15:181–189

    Google Scholar 

  8. Männer J, Wessel A, Yelbuz TM (2010) How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube. Dev Dyn 239:1035–1046

    PubMed  Google Scholar 

  9. Payne F (1925) General description of a seven somite embryo. Contr Embryol Carnegie Inst 16:115–124

    Google Scholar 

  10. Wilting J, Brand-Saberi B, Kurz H, Christ B (1995) Development of the embryonic vascular system. Cell Mol Biol Res 41:219–232

    CAS  PubMed  Google Scholar 

  11. Evans HM (1911) Die Entwicklung des Blutgefäßsystems. In: Keibel F, Mall FP (eds) Handbuch der Entwicklungsgeschichte des Menschen, Bd 2. Hirzel Verlag, Leipzig, pp 551–688

    Google Scholar 

  12. Risau W, Flamme I (1995) Vasculogenesis. Ann Rev Cell Dev Biol 11:73–91

    CAS  Google Scholar 

  13. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    CAS  PubMed  Google Scholar 

  14. Schmidt A, Brixius K, Bloch W (2007) Endothelial precursor cell migration during vasculogenesis. Circ Res 101:125–136

    CAS  PubMed  Google Scholar 

  15. Yvernogeau L, Auda-Boucher G, Fontaine-Perus J (2012) Limb bud colonization by somite-derived angioblasts is a crucial step for myoblast emigration. Development 139:277–287

    CAS  PubMed  Google Scholar 

  16. Xu K, Cleaver O (2011) Tubulogenesis during blood vessel formation. Semin Cell Dev Biol 22:993–1004

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Sabin FR (1917) Preliminary note on the differentiation of angioblasts and the method by which they produce blood-vessels, blood-plasma and red blood-cells as seen in the living chick. Anat Rec 13:199–204

    Google Scholar 

  18. Sabin FR (1920) Studies on the origin of blood-vessels and of red blood corpuscles as seen in the living blastoderm of chicks during the second day of incubation. Carnegie Contrib Embryol 272:214–262

    Google Scholar 

  19. Hirschi KK (2012) Hemogenic endothelium during development and beyond. Blood 119:4823–4827

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Eichmann A, Yuan L, Moyon D, Le Noble F, Pardanaud L, Breant C (2005) Vascular development: from precursor cells to branched arterial and venous networks. Int J Dev Biol 49:259–267

    CAS  PubMed  Google Scholar 

  21. Ribatti D (2006) Genetic and epigenetic mechanisms in the early development of the vascular system. J Anat 208:139–152

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Männer J, Seidl W, Steding G (1995) Formation of the cervical flexure: an experimental study on chick embryos. Acta Anat 152:1–10

    PubMed  Google Scholar 

  23. Le Noble F, Moyon D, Pardanaud L, Yuan L, Djonov V, Matthijsen R, Breant C, Fleury V, Eichmann A (2004) Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 131:361–375

    PubMed  Google Scholar 

  24. Culver JC, Dickinson ME (2010) Effects of hemodynamic force on embryonic development. Microcirculation 17:164–178

    PubMed Central  PubMed  Google Scholar 

  25. Jones EAV, Le Noble F, Eichmann A (2006) What determines blood vessel structure? Genetic prespecification vs hemodynamics. Physiology 21:388–395

    PubMed  Google Scholar 

  26. Ribatti D, Nico B, Crivellato E (2009) Morphological and molecular aspects of physiological vascular morphogenesis. Angiogenesis 12:101–111

    CAS  PubMed  Google Scholar 

  27. Hoffmann JJ, Iruela-Arispe ML (2007) Notch signaling in blood vessels. Who is talking to whom about what? Circ Res 100:1556–1568

    Google Scholar 

  28. Udan RS, Culver JC, Dickinson ME (2013) Understanding vascular development. Dev Biol 2:327–346

    CAS  Google Scholar 

  29. Fraisl P, Mazzone M, Schmidt T, Carmeliet P (2009) Regulation of angiogenesis by oxygen and metabolism. Dev Cell 16:167–179

    CAS  PubMed  Google Scholar 

  30. Murray B, Wilson DJ (2001) A study of metabolites as intermediate effectors in angiogenesis. Angiogenesis 4:71–77

    CAS  PubMed  Google Scholar 

  31. Roman BL, Pekkan K (2012) Mechanotransduction in embryonic vascular development. Biomech Model Mechanobiol 11:1149–1168

    PubMed  Google Scholar 

  32. Hungerford JE, Little CD (1999) Developmental biology of the vascular smooth muscle cell: building a multilayered vessel wall. J Vasc Res 36:2–27

    CAS  PubMed  Google Scholar 

  33. Majesky MW (2007) Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol 27:1248–1258

    CAS  PubMed  Google Scholar 

  34. Majesky MW, Dong XR, Regan JN, Hoglund VJ (2011) Vascular smooth muscle progenitor cells: building and repairing blood vessels. Arterioscler Circ Res 108:365–377

    CAS  Google Scholar 

  35. Waldo KL, Hutson MR, Ward CC, Zdanowicz M, Stadt HA, Kumiski D, Abu-Issa R, Kirby ML (2005) Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart. Dev Biol 281:78–90

    CAS  PubMed  Google Scholar 

  36. Le Lievre CS, Le Douarin NM (1975) Mesenchymal derivatives of the neural crest: analysis of chimeric quail and chick embryos. J Embryol Exp Morphol 34:125–154

    PubMed  Google Scholar 

  37. Kirby ML, Waldo KL (1995) Neural crest and cardiovascular patterning. Circ Res 77:211–215

    CAS  PubMed  Google Scholar 

  38. Bergwerff M, Verberne ME, De Ruiter MC, Poelmann RE, Gittenberger-de Groot AC (1998) Neural crest contribution to the developing circulatory system: implications for vascular morphology? Circ Res 82:221–231

    CAS  PubMed  Google Scholar 

  39. Jiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cardiac neural crest. Development 127:1607–1616

    CAS  PubMed  Google Scholar 

  40. Wiegreffe C, Christ B, Huang R, Scaal M (2009) Remodeling of aortic smooth muscle during avian embryonic development. Dev Dyn 238:624–631

    PubMed  Google Scholar 

  41. Sato Y (2013) Dorsal aorta formation: separate origins, lateral-to-medial migration and of remodeling. Dev Growth Differ 55:113–129

    PubMed  Google Scholar 

  42. Dettman RW, Denetclaw W, Ordahl CP, Bristow J (1998) Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol 193:169–181

    CAS  PubMed  Google Scholar 

  43. Männer J (1999) Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium. Anat Rec 255:212–226

    PubMed  Google Scholar 

  44. Que J, Wilm B, Hasegawa H, Wang F, Bader DM, Hogan BLM (2008) Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development. Proc Natl Acad Sci U S A 105:16626–16630

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Wilm B, Ipenberg A, Hastie ND, Burch JB, Bader DM (2005) The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature. Development 132:5317–5328

    CAS  PubMed  Google Scholar 

  46. His W (1900) Lecithoblast und Angioblast der Wirbeltiere. Abhandl Math Naturwiss Kl sächs Akad Wiss (Wien) 26:171–328

    Google Scholar 

  47. Risau W, Sariola H, Zerwes HG, Sasse J, Ekblom P, Kemler R, Doetschman T (1988) Vasculogenesis and angiogenesis in embryonic-system-cell-derived embryoid bodies. Development 102:471–478

    CAS  PubMed  Google Scholar 

  48. Pardanaud L, Yassine F, Dieterlen-Lievre F (1989) Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny. Development 105:473–485

    CAS  PubMed  Google Scholar 

  49. Wilting J, Kurz H, Oh S-J, Christ B (1998) Angiogenesis and lymphangiogenesis: analogous mechanisms and homologous growth factors. In: Little C, Mironov V, Sage H (eds) Vascular morphogenesis: in vivo, in vitro and in mente. Birkhäuser, Boston, pp 21–34

    Google Scholar 

  50. Pardanaud L, Luton D, Prigent M, Bourcheix LM, Catala M, Dieterlen-Lievre F (1996) Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development 122:1363–1371

    CAS  PubMed  Google Scholar 

  51. Kubo H, Alitalo K (2003) The bloody fate of endothelial stem cells. Genes Dev 17:322–329

    CAS  PubMed  Google Scholar 

  52. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66

    CAS  PubMed  Google Scholar 

  53. Eichmann A, Pardanaud L, Yuan L, Moyon D (2002) Vasculogenesis and the search for the hemangioblast. J Hematother Stem Cell Res 11:207–214

    PubMed  Google Scholar 

  54. Azar Y, Eyal-Giladi H (1979) Marginal zone cells - the primitive streak-inducing component of the primary hypoblast in the chick. J Embryol Exp Morphol 52:79–88

    CAS  PubMed  Google Scholar 

  55. Christ B, Grim M, Wilting J, von Kirschhofer K, Wachtler F (1991) Differentiation of endothelial cells in avian embryos does not depend on gastrulation. Acta Histochem 91:193–199

    CAS  PubMed  Google Scholar 

  56. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228

    CAS  PubMed  Google Scholar 

  57. Tilki D, Hohn HP, Ergün B, Rafii S, Ergün S (2009) Emerging biology of vascular wall progenitor cells in health and disease. Trends Mol Med 15:501–509

    CAS  PubMed  Google Scholar 

  58. Noden DM (1988) Interactions and fates of avian craniofacial mesenchyme. Development 103 Suppl:121–140

    CAS  PubMed  Google Scholar 

  59. Wilms P, Christ B, Wilting J, Wachtler F (1991) Distribution and migration of angiogenic cells from grafted avascular intraembryonic mesoderm. Anat Embryol 183:371–377

    CAS  PubMed  Google Scholar 

  60. Hirakow R, Hiruma T (1983) TEM-studies on development and canalization of the dorsal aorta in the chick embryo. Anat Embryol 166:307–315

    CAS  PubMed  Google Scholar 

  61. Benninghoff A, Hartmann A, Hellmann T (1930) Blutgefäß- und Lymphgefäßapparat, Atmungsapparat und Innersekretorische Drüsen. In: von Möllendorff W (ed) Handbuch der mikroskopischen Anatomie des Menschen. Springer, Berlin, pp 1–160

    Google Scholar 

  62. Wolff JR, Bär T (1972) Nahtlose cerebrale Capillarendothelien während der Cortexentwicklung der Ratte. Brain Res 41:17–24

    CAS  PubMed  Google Scholar 

  63. Wacker A, Gerhardt H (2011) Endothelial development taking shape. Curr Opin Cell Biol 23:676–685

    CAS  PubMed  Google Scholar 

  64. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248

    CAS  PubMed  Google Scholar 

  65. Schaper W, Buschmann I (1999) Arteriogenesis, the good and bad of it. Cardiovasc Res 43:835–837

    CAS  PubMed  Google Scholar 

  66. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146:873–887

    CAS  PubMed  Google Scholar 

  67. Folkman J (1985) Tumor angiogenesis. Adv Cancer Res 43:175–203

    CAS  PubMed  Google Scholar 

  68. Moscatelli D, Rifkin DB (1988) Membrane and matrix localization of proteases: a common theme in tumor invasion and angiogenesis. Biochem Biophys Acta 948:67–85

    CAS  PubMed  Google Scholar 

  69. Kamei M, Saunders WB, Bayless KJ, Dye L, Davis GE, Weinstein BM (2006) Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442:453–456

    CAS  PubMed  Google Scholar 

  70. Ribatti D, Crivellato E (2012) “Sprouting angiogenesis”, a reappraisal. Dev Biol 372:157–165

    CAS  PubMed  Google Scholar 

  71. Seifert R, Zhao B, Christ B (1992) Cytokinetic studies on the aortic endothelium and limb bud vascularization in avian embryos. Anat Embryol 186:601–610

    CAS  PubMed  Google Scholar 

  72. Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S, Peri F, Wilson SW, Ruhrberg C (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116:829–840

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Outtz HH, Tattersall IW, Kofler NM, Steinbach N, Kitajewski J (2011) Notch1 controls macrophage recruitment and Notch signaling is activated at sites of endothelial cell anastomosis during retinal angiogenesis in mice. Blood 118:3436–3439

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Kurz H, Gärtner T, Christ B (1996) The first blood vessels in the avian neural tube are formed by a combination of dorsal immigration and ventral sprouting of endothelial cells. Dev Biol 173:133–147

    CAS  PubMed  Google Scholar 

  75. Burri PH, Tarek MR (1990) A novel mechanism of capillary growth in the rat pulmonary microcirculation. Anat Rec 228:35–45

    CAS  PubMed  Google Scholar 

  76. Patan S, Haenni B, Burri PH (1993) Evidence for intussusceptive capillary growth in the chicken chorio-allantoic membrane. Anat Embryol 187:121–130

    CAS  PubMed  Google Scholar 

  77. Luttun A, Carmeliet G, Carmeliet P (2002) Vascular progenitors: from biology to treatment. Trends Cardiovasc Med 2(2):88–96

    Google Scholar 

  78. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95:952–958

    CAS  PubMed  Google Scholar 

  79. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Moore MA, Hajjar KA, Manova K, Benezra R, Rafii S (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7:1194–1201

    CAS  PubMed  Google Scholar 

  80. Swift MR, Weinstein BM (2009) Arterial-venous specification during development. Circ Res 104:576–588

    CAS  PubMed  Google Scholar 

  81. Gale NW, Holland SJ, Valenzuela DM, Flenniken A, Pan L, Ryan TE, Henkemeyer M, Strebhardt K, Hirai H, Wilkinson DG, Pawson T, Davis S, Yancopoulos GD (1996) Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 7:9–19

    Google Scholar 

  82. Kullander K, Klein R (2002) Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol 3:475–486

    CAS  PubMed  Google Scholar 

  83. Othman-Hassan K, Patel K, Papoutsi M, Rodriguez-Niedenführ M, Christ B, Wilting J (2001) Arterial identity of endothelial cells is controlled by local cues. Dev Biol 237:398–409

    CAS  PubMed  Google Scholar 

  84. Diehl S, Bruno R, Wilkinson GA, Loose DA, Wilting J, Schweigerer L, Klein R (2005) Altered expression patterns of EphrinB2 and EphB2 in human umbilical vessels and congenital venous malformations. Pediatr Res 57:537–544

    CAS  PubMed  Google Scholar 

  85. Landis EM, Pappenheimer JR (1963) Exchange of substances through the capillary wall. In: Pow P (ed) Handbook of physiology. American Physiological Society, Washington, pp 961–1073

    Google Scholar 

  86. Starling EH (1896) On the absorption of fluids from the connective tissue spaces. J Physiol 19:312–326

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Casley-Smith JR (1980) The fine structure and functioning of tissue channels and lymphatics. Lymphology 13:177–183

    CAS  PubMed  Google Scholar 

  88. Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, Vestweber D, Corada M, Molendini C, Dejana E, McDonald DM (2007) Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med 204:2349–2362

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Berens von Rautenfeld D, Drenckhahn D (1994) Bau der Lymphgefäße. In: Drenckhahn D, Zenker W (eds) Benninghoff Anatomie: Makroskopische Anatomie, Embryologie und Histologie des Menschen. Urban & Schwarzenberg, München, pp 756–761

    Google Scholar 

  90. Wilting J, Männer J (2013) Development and patterning of the cardiac lymphatic network. In: Karunamuni G (ed) The cardiac lymphatic system. Springer, Heidelberg/New York, pp 17–31

    Google Scholar 

  91. Van der Putte SCJ (1975) The development of the lymphatic system in man. Adv Anat Embryol Cell Biol 51:1–60

    Google Scholar 

  92. Sabin FR (1909) The lymphatic system in human embryos, with consideration of the system of a whole. Am J Anat 9:43–91

    Google Scholar 

  93. Sabin FR (1902) On the origin and development of the lymphatic system from the veins and the development of the lymph hearts and the thoracic duct in the pig. Am J Anat 1:367–389

    Google Scholar 

  94. Wigle JT, Oliver G (1999) Prox1 function is required for the development of the murine lymphatic system. Cell 98:769–778

    CAS  PubMed  Google Scholar 

  95. Yaniv K, Isogai S, Castranova D, Dye L, Hitomi J, Weinstein BM (2006) Live imaging of lymphatic development in the zebrafish. Nat Med 12:711–716

    CAS  PubMed  Google Scholar 

  96. Okuda KS, Astin JW, Misa JP, Flores MV, Crosier KE, Crosier PS (2012) Lyve1 expression reveals novel lymphatic vessels and new mechanisms for lymphatic vessel development in zebrafish. Development 39:2381–2391

    Google Scholar 

  97. Srinivasan RS, Dillard ME, Lagutin OV, Lin FJ, Tsai S, Tsai MJ, Samokhvalov IM, Oliver G (2007) Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev 21:2422–2432

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Buttler K, Kreysing A, von Kaisenberg CS, Schweigerer L, Gale N, Papoutsi M, Wilting J (2006) Mesenchymal cells with leukocyte and lymphendothelial characteristics in murine embryos. Dev Dyn 235:1554–1562

    CAS  PubMed  Google Scholar 

  99. Pollmann C, Hägerling R, Kiefer F (2014) Visualization of lymphatic vessel development, growth, and function. Adv Anat Embryol Cell Biol 214:167–186

    PubMed  Google Scholar 

  100. Papoutsi M, Tomarev SI, Eichmann A, Pröls F, Christ B, Wilting J (2001) Endogenous origin of the lymphatics in the avian chorioallantoic membrane. Dev Dyn 222:238–251

    CAS  PubMed  Google Scholar 

  101. Kerjaschki D, Huttary N, Raab I, Regele H, Bojarski-Nagy K, Bartel G, Kröber SM, Greinix H, Rosenmaier A, Karlhofer F, Wick N, Mazal PR (2006) Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med 12:230–234

    CAS  PubMed  Google Scholar 

  102. Cha YR, Fujita M, Butler M, Isogai S, Kochhan E, Siekmann AF, Weinstein BM (2012) Chemokine signaling directs trunk lymphatic network formation along the preexisting blood vasculature. Dev Cell 22:824–836

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Bowles J, Secker G, Nguyen C, Kazenwadel J, Truong V, Frampton E, Curtis C, Skoczylas R, Davidson TL, Miura N, Hong YK, Koopman P, Harvey NL, François M (2014) Control of retinoid levels by CYP26B1 is important for lymphatic vascular development in the mouse embryo. Dev Biol 386:25–33

    CAS  PubMed  Google Scholar 

  104. François M, Caprini A, Hosking B, Orsenigo F, Wilhelm D, Browne C, Paavonen K, Karnezis T, Shayan R, Downes M, Davidson T, Tutt D, Cheah KS, Stacker SA, Muscat GE, Achen MG, Dejana E, Koopman P (2008) Sox18 induces development of the lymphatic vasculature in mice. Nature 456:643–647

    PubMed  Google Scholar 

  105. Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140:460–476

    CAS  PubMed  Google Scholar 

  106. Wilting J, Papoutsi M, Christ B, Nicolaides KH, von Kaisenberg CS, Borges J, Stark GB, Alitalo K, Tomarev SI, Niemeyer C, Rössler J (2002) The transcription factor Prox1 is a marker for lymphatic endothelial cells in normal and diseased tissues. FASEB J 16:1271–1273

    CAS  PubMed  Google Scholar 

  107. Podgrabinska S, Braun P, Velasco P, Kloos B, Pepper MS, Skobe M (2002) Molecular characterization of lymphatic endothelial cells. Proc Natl Acad Sci U S A 99:16069–16074

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Becker J, Fröhlich J, Perske C, Pavlakovic H, Wilting J (2012) Reelin signalling in neuroblastoma: migratory switch in metastatic stages. Int J Oncol 41:681–689

    CAS  PubMed  Google Scholar 

  109. Buttler K, Becker J, Pukrop T, Wilting J (2013) Maldevelopment of dermal lymphatics in Wnt5a-knockout-mice. Dev Biol 381:365–376

    CAS  PubMed  Google Scholar 

  110. Norgall S, Papoutsi M, Rössler J, Schweigerer L, Wilting J, Weich HA (2007) Elevated expression of VEGFR-3 in lymphatic endothelial cells from lymphangiomas. BMC Cancer 7:105

    PubMed Central  PubMed  Google Scholar 

  111. Albuquerque RJ, Hayashi T, Cho WG, Kleinman ME, Dridi S, Takeda A, Baffi JZ, Yamada K, Kaneko H, Green MG, Chappell J, Wilting J, Weich HA, Yamagami S, Amano S, Mizuki N, Alexander JS, Peterson ML, Brekken RA, Hirashima M, Capoor S, Usui T, Ambati BK, Ambati J (2009) Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat Med 15:1023–1030

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Singh N, Tiem M, Watkins R, Cho YK, Wang Y, Olsen T, Uehara H, Mamalis C, Luo L, Oakey Z, Ambati BK (2013) Soluble vascular endothelial growth factor receptor 3 is essential for corneal alymphaticity. Blood 121:4242–4249

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Mendola A, Schlögel MJ, Ghalamkarpour A, Irrthum A, Nguyen HL, Fastré E, Bygum A, van der Vleuten C, Fagerberg C, Baselga E, Quere I, Mulliken JB, Boon LM, Brouillard P, Vikkula M, Lymphedema Research Group (2013) Mutations in the VEGFR3 signaling pathway explain 36 % of familial lymphedema. Mol Syndromol 4:257–266

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Alders M, Hogan BM, Gjini E, Salehi F, Al-Gazali L, Hennekam EA, Holmberg EE, Mannens MM, Mulder MF, Offerhaus GJ, Prescott TE, Schroor EJ, Verheij JB, Witte M, Zwijnenburg PJ, Vikkula M, Schulte-Merker S, Hennekam RC (2009) Mutations in CCBE1 cause generalized lymph vessel dysplasia in humans. Nat Genet 41:1272–1274

    CAS  PubMed  Google Scholar 

  115. Huang XZ, Wu JF, Ferrando R, Lee JH, Wang YL, Farese RV Jr, Sheppard D (2000) Fatal bilateral chylothorax in mice lacking the integrin alpha9beta1. Mol Cell Biol 20:5208–5215

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Lutter S, Xie S, Tatin F, Makinen T (2012) Smooth muscle-endothelial cell communication activates Reelin signaling and regulates lymphatic vessel formation. J Cell Biol 197:837–849

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Tatin F, Taddei A, Weston A, Fuchs E, Devenport D, Tissir F, Makinen T (2013) Planar cell polarity protein Celsr1 regulates endothelial adherens junctions and directed cell rearrangements during valve morphogenesis. Dev Cell 26:31–44

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Danussi C, Spessotto P, Petrucco A, Wassermann B, Sabatelli P, Montesi M, Doliana R, Bressan GM, Colombatti A (2008) Emilin1 deficiency causes structural and functional defects of lymphatic vasculature. Mol Cell Biol 28:4026–4039

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Gale NW, Thurston G, Hackett SF, Renard R, Wang Q, McClain J, Martin C, Witte C, Witte MH, Jackson D, Suri C, Campochiaro PA, Wiegand SJ, Yancopoulos GD (2002) Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell 3:411–423

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Wilting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Italia

About this chapter

Cite this chapter

Wilting, J., Männer, J. (2015). Vascular Embryology. In: Mattassi, R., Loose, D., Vaghi, M. (eds) Hemangiomas and Vascular Malformations. Springer, Milano. https://doi.org/10.1007/978-88-470-5673-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5673-2_1

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5672-5

  • Online ISBN: 978-88-470-5673-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics