Advertisement

BI-RADS: Ultrasound Update Including Elastography. Where Do We Stand Now?

  • Alexander Mundinger

Abstract

New developments in ultrasound (US) encompass 3D automated US as an adjunct to screening, handheld highfrequency transducers in whole breast US, and hybrid systems. High-frequency US is relevant for assessing small mammographic masses and for preoperative staging to detect accompanying focal or ductal changes due to ductal carcinoma in situ (DCIS) and metastatic axillary lymph nodes (ALN). Advanced modes such as compounding, tissue harmonic imaging (THI), and speckle reduction increase the signal to contrast ratio. Doppler techniques and elastography are additional tools to recategorize Breast Imaging Reporting and Data System (BI-RADS) 3 vs. 4a lesions, suggesting upgrading the former if the lesion is stiff or hypervascularized and downgrading the latter if the lesion is soft and not vascularized. Modern US assessment of architecture, flow, elasticity, and redefinition of special cases are among the highlights of the updated BI-RADS lexicon. The most relevant descriptors for characterizing a US lesion continue to comprehend shape, margin, and orientation together.

Keywords

Sentinel Lymph Node Biopsy Strain Elastography Terminal Duct Lobular Unit Tissue Harmonic Imaging Complicated Cyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Mundinger A (2013) Advanced breast ultrasound and interventions: an update. In Hodler J, von Schulthess GK, Zollikofer CH L (Eds) Muskuloskeletal diseases. 2013–2016. Springer-Verlag Italia, Milan, pp 282–289.Google Scholar
  2. 2.
    Weismann C, Mayr C, Egger H, Auer A (2011) Breast sono-graphy −2D,3D,4D ultrasound or elastography? Breast Care 6:98–103.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Bamber J, Cosgrove D, Dietrich CF et al (2013) EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic principles and technology. Ultraschall Med 34:169–184.PubMedCrossRefGoogle Scholar
  4. 4.
    Cosgrove D, Piscaglia F, Bamber J et al (2013) EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications. Ultraschall Med 34:238–253.PubMedCrossRefGoogle Scholar
  5. 5.
    Mundinger A, Wilson ARM, Weismann C et al (2012) Where do we stand in advanced breast ultrasound? EJC 48(Suppl 1):15–17.CrossRefGoogle Scholar
  6. 6.
    Abe H, Schmidt RA, Shah RN et al (2010) MR-directed (“Second-Look”) ultrasound examination for breast lesions detected initially on MRI: MR and sonographic findings. AJR Am J Roentgenol 194:370–377.PubMedCrossRefGoogle Scholar
  7. 7.
    Price ER, Hargreaves J, Lipson JA et al (2013) The California breast density information group: a collaborative response to the issues of breast density, breast cancer risk, and breast density notification legislation. Radiology 269:887–892.PubMedCrossRefGoogle Scholar
  8. 8.
    Heywang-Köbrunner SH, Schreer I, Heindel W, Katalinic A (2008) Imaging studies for the early detection of breast cancer. Dtsch Arztebl Int 105:541–547.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Madjar H, Rickard M, Jellins J et al (1999) IBUS guidelines for the ultrasonic examination of the breast. Eur J Ultrasound 9:99–102.PubMedCrossRefGoogle Scholar
  10. 10.
    Sencha AN, Evseeva EV, Mogutov M, Patrunov YN (2013) Breast ultrasound. Springer, Heidelberg, New York, Dordrecht, London, pp 23–42.CrossRefGoogle Scholar
  11. 11.
    D’Orsi CJ, Sickles EA, Mendelson EB, Morris EA (2013) Breast imaging reporting and data system: ACR BI-RADS-breast imaging atlas, 5th ed. American College of Radiology, Reston, VA (in press).Google Scholar
  12. 12.
    Madjar H, Ohlinger R, Mundinger A et al (2006) BI-RADSanalogue DEGUM criteria for findings in breast ultrasound — consensus of the DEGUM Committee on Breast Ultrasound. Ultraschall Med 27:374–379.PubMedCrossRefGoogle Scholar
  13. 13.
    Wojcinski S, Farrokh A, Weber S et al (2010) Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS®-US classification system with sonoelastography. Ultraschall Med 31:484–491.PubMedCrossRefGoogle Scholar
  14. 14.
    Lazarus E, Mainiero MB, Schepps et al (2006) BI-RADS lexicon for US and mammography: interobserver variability and positive predictive value. Radiology 239:385–391.PubMedCrossRefGoogle Scholar
  15. 15.
    Lee HJ, Kim EK, Kim MJ et al (2008) Observer variability of Breast Imaging Reporting and Data System (BI-RADS) for breast ultrasound. Eur J Radiol 65:293–298.PubMedCrossRefGoogle Scholar
  16. 16.
    Santana Montesdeoca JM, Gómez Arnáiz A, Fuentes Pavón R et al (2009) Diagnostic accuracy and interobserver variability in the BI-RADS ultrasound system. Radiologia 51:477–486.PubMedCrossRefGoogle Scholar
  17. 17.
    Mendelson EB, Baum JK, Berg WA et al (2003) Breast imaging reporting and data system, BI-RADS. American College of Radiology, Reston.Google Scholar
  18. 18.
    Berg WA, Sechtin AG, Marques H et al (2010) Cystic breast masses and the ACRIN 6666 experience. Radiol Clin North Am 48:931–987.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Gruber R, Jaromi S, Rudas M et al (2012) Histologic work-up of non-palpable breast lesions classified as probably benign at initial mammography and/or ultrasound (BI-RADS category 3). Eur J Radiol [Epub ahead of print].Google Scholar
  20. 20.
    Fu CY, Hsu HH, Yu JC et al (2010) Influence of age on PPV of sonographic BI-RADS Categories 3, 4, and 5. Ultraschall Med 32:8–13.CrossRefGoogle Scholar
  21. 21.
    Moon HJ, Kim MJ, Kwak JY et al (2010) Probably benign breast lesions on ultrasonography: a retrospective review of ultrasonographic features and clinical factors affecting the BIRADS categorization. Acta Radiol 51:375–382.PubMedCrossRefGoogle Scholar
  22. 22.
    Moon HJ, Kim MJ, Kwak JY et al (2010) Malignant lesions initially categorized as probably benign breast lesions: retrospective review of ultrasonographic, clinical and pathologic characteristics. Ultrasound Med Biol 36:551–559.PubMedCrossRefGoogle Scholar
  23. 23.
    Berg WA, Zhang Z, Lehrer D et al; ACRIN 6666 Investigators (2012) Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammo — graphy in women with elevated breast cancer risk. JAMA 07:1394–1404.Google Scholar
  24. 24.
    El Saghir NS, Anderson BO (2012) Breast cancer early detection and resources: where in the world do we start? The Breast 21:423–425.PubMedCrossRefGoogle Scholar
  25. 25.
    Mundinger A (2006) Staging the breast and axilla. EJC Supplements 4:35–37.CrossRefGoogle Scholar
  26. 26.
    Lehman CD, DeMartini W, Anderson BO et al (2009) Indications for breast MRI in the patient with newly diagnosed breast cancer. J Natl Compr Canc Netw 7:193–201.PubMedGoogle Scholar
  27. 27.
    Cho N, Moon WK, Cha JH et al (2009) Ultrasound-guided vacuum-assisted biopsy of microcalcifications detected at screening mammography. Acta Radiol 50:602–609.PubMedCrossRefGoogle Scholar
  28. 28.
    Suh YJ, Kim MJ, Kim EK et al (2012) Comparison of the underestimation rate in cases with ductal carcinoma in situ at ultrasound-guided core biopsy: 14-gauge automated core-needle biopsy vs. 8-or 11-gauge vacuum-assisted biopsy. Br J Radiol 85:e349–356.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Barentsz MW, van Dalen T, Gobardhan PD et al (2012) Intraoperative ultrasound guidance for excision of non-palpable invasive breast cancer: a hospital-based series and an overview of the literature. Breast Cancer Res Treat 135:209–219.PubMedCrossRefGoogle Scholar
  30. 30.
    Houssami N, Hayes DF (2009) Review of preoperative magnetic resonance imaging (MRI) in breast cancer: should MRI be performed on all women with newly diagnosed, early stage breast cancer? CA Cancer J Clin 59:290–302.PubMedCrossRefGoogle Scholar
  31. 31.
    Turnbull L, Brown S, Harvey I et al (2010) Comparative effectiveness of MRI in breast cancer (COMICE) trial: a randomised controlled trial. Lancet 375:563–571.PubMedCrossRefGoogle Scholar
  32. 32.
    Peters NH, van Esser S, van den Bosch MA et al (2011) Preoperative MRI and surgical management in patients with nonpalpable breast cancer: the MONET — randomised controlled trial. Eur J Cancer 47:879–886.PubMedCrossRefGoogle Scholar
  33. 33.
    Tozaki M, Fukuma E (2011) Does power Doppler ultrasono — graphy improve the BI-RADS category assessment and diagnostic accuracy of solid breast lesions? Acta Radiol 52:706–710.PubMedCrossRefGoogle Scholar
  34. 34.
    Wang X, Xu P, Wang Y, Grant EG (2011) Contrast-enhanced ultrasonographic findings of different histopathologic types of breast cancer. Acta Radiol 52:248–255.PubMedCrossRefGoogle Scholar
  35. 35.
    Sadigh G, Carlos RC, Neal CH, Dwamena BA (2012) Ultrasonographic differentiation of malignant from benign breast lesions: a meta-analytic comparison of elasticity and BIRADS scoring. Breast Cancer Res Treat 133:23–35.PubMedCrossRefGoogle Scholar
  36. 36.
    Gong X, Xu Q, Xu Z et al (2011) Real-time elastography for the differentiation of benign and malignant breast lesions: a meta-analysis. Breast Cancer Res Treat 130:11–18.PubMedCrossRefGoogle Scholar
  37. 37.
    Berg WA, Cosgrove DO, Doré CJ et al for the BE1 Investigators (2012) Shear-wave elastography improves the specificity of breast US: the multinational study of 939 masses. Radiology 262:435–449.PubMedCrossRefGoogle Scholar
  38. 38.
    Evans A, Whelehan P, Thomson K (2012) Invasive breast cancer: relationship between shear-wave elastographic findings and histologic prognostic factors. Radiology 263:673–677.PubMedCrossRefGoogle Scholar
  39. 39.
    Prosch H, Halbwachs C, Strobl C et al (2011) Automated breast ultrasound vs. handheld ultrasound: BI-RADS classification, duration of the examination and patient comfort. Ultraschall Med 32:504–510.PubMedCrossRefGoogle Scholar
  40. 40.
    Giuliano V, Giuliano C (2012) Improved breast cancer detection in asymptomatic women using 3D-automated breast ultrasound in mammographically dense breasts. Clin Imaging [Epub ahead of print].Google Scholar
  41. 41.
    Choi YJ, Ko EY, Han BK et al (2009) High-resolution ultrasonographic features of axillary lymph node metastasis in patients with breast cancer. Breast 18:119–122.PubMedCrossRefGoogle Scholar
  42. 42.
    Alvarez S, Añorbe E, Alcorta P et al (2006) Role of sonography in the diagnosis of axillary lymph node metastases in breast cancer: a systematic review. AJR Am J Roentgenol 186:1342–1348PubMedCrossRefGoogle Scholar
  43. 43.
    Choi JS, Kim MJ, Moon HJ et al (2012) False negative results of preoperative axillary ultrasound in patients with invasive breast cancer: correlations with clinicopathologic findings. Ultrasound Med Biol 38:1881–1886.PubMedCrossRefGoogle Scholar
  44. 44.
    Cody HS 3rd, Houssami N (2012) Axillary management in breast cancer: what’s new for 2012? Breast 21:411–415.PubMedCrossRefGoogle Scholar
  45. 45.
    Pan L, Han Y, Sun X et al (2010) FDG-PET and other imaging modalities for the evaluation of breast cancer recurrence and metastases: a meta-analysis. J Cancer Res Clin Oncol 136:1007–1022.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Britton P, Warwick J, Wallis MG et al (2012). Measuring the accuracy of diagnostic imaging in symptomatic breast patients: team and individual performance. Br J Radiol 85:415–22.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2014

Authors and Affiliations

  • Alexander Mundinger
    • 1
  1. 1.Radiological Department and Breast CentreNiels-Stensen-ClinicsOsnabrueckGermany

Personalised recommendations