Skip to main content

BI-RADS: Ultrasound Update Including Elastography. Where Do We Stand Now?

  • Chapter
Diseases of the Abdomen and Pelvis 2014–2017
  • 1119 Accesses

Abstract

New developments in ultrasound (US) encompass 3D automated US as an adjunct to screening, handheld highfrequency transducers in whole breast US, and hybrid systems. High-frequency US is relevant for assessing small mammographic masses and for preoperative staging to detect accompanying focal or ductal changes due to ductal carcinoma in situ (DCIS) and metastatic axillary lymph nodes (ALN). Advanced modes such as compounding, tissue harmonic imaging (THI), and speckle reduction increase the signal to contrast ratio. Doppler techniques and elastography are additional tools to recategorize Breast Imaging Reporting and Data System (BI-RADS) 3 vs. 4a lesions, suggesting upgrading the former if the lesion is stiff or hypervascularized and downgrading the latter if the lesion is soft and not vascularized. Modern US assessment of architecture, flow, elasticity, and redefinition of special cases are among the highlights of the updated BI-RADS lexicon. The most relevant descriptors for characterizing a US lesion continue to comprehend shape, margin, and orientation together.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mundinger A (2013) Advanced breast ultrasound and interventions: an update. In Hodler J, von Schulthess GK, Zollikofer CH L (Eds) Muskuloskeletal diseases. 2013–2016. Springer-Verlag Italia, Milan, pp 282–289.

    Google Scholar 

  2. Weismann C, Mayr C, Egger H, Auer A (2011) Breast sono-graphy −2D,3D,4D ultrasound or elastography? Breast Care 6:98–103.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Bamber J, Cosgrove D, Dietrich CF et al (2013) EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic principles and technology. Ultraschall Med 34:169–184.

    Article  CAS  PubMed  Google Scholar 

  4. Cosgrove D, Piscaglia F, Bamber J et al (2013) EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications. Ultraschall Med 34:238–253.

    Article  CAS  PubMed  Google Scholar 

  5. Mundinger A, Wilson ARM, Weismann C et al (2012) Where do we stand in advanced breast ultrasound? EJC 48(Suppl 1):15–17.

    Article  Google Scholar 

  6. Abe H, Schmidt RA, Shah RN et al (2010) MR-directed (“Second-Look”) ultrasound examination for breast lesions detected initially on MRI: MR and sonographic findings. AJR Am J Roentgenol 194:370–377.

    Article  PubMed  Google Scholar 

  7. Price ER, Hargreaves J, Lipson JA et al (2013) The California breast density information group: a collaborative response to the issues of breast density, breast cancer risk, and breast density notification legislation. Radiology 269:887–892.

    Article  PubMed  Google Scholar 

  8. Heywang-Köbrunner SH, Schreer I, Heindel W, Katalinic A (2008) Imaging studies for the early detection of breast cancer. Dtsch Arztebl Int 105:541–547.

    PubMed Central  PubMed  Google Scholar 

  9. Madjar H, Rickard M, Jellins J et al (1999) IBUS guidelines for the ultrasonic examination of the breast. Eur J Ultrasound 9:99–102.

    Article  CAS  PubMed  Google Scholar 

  10. Sencha AN, Evseeva EV, Mogutov M, Patrunov YN (2013) Breast ultrasound. Springer, Heidelberg, New York, Dordrecht, London, pp 23–42.

    Book  Google Scholar 

  11. D’Orsi CJ, Sickles EA, Mendelson EB, Morris EA (2013) Breast imaging reporting and data system: ACR BI-RADS-breast imaging atlas, 5th ed. American College of Radiology, Reston, VA (in press).

    Google Scholar 

  12. Madjar H, Ohlinger R, Mundinger A et al (2006) BI-RADSanalogue DEGUM criteria for findings in breast ultrasound — consensus of the DEGUM Committee on Breast Ultrasound. Ultraschall Med 27:374–379.

    Article  CAS  PubMed  Google Scholar 

  13. Wojcinski S, Farrokh A, Weber S et al (2010) Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS®-US classification system with sonoelastography. Ultraschall Med 31:484–491.

    Article  CAS  PubMed  Google Scholar 

  14. Lazarus E, Mainiero MB, Schepps et al (2006) BI-RADS lexicon for US and mammography: interobserver variability and positive predictive value. Radiology 239:385–391.

    Article  PubMed  Google Scholar 

  15. Lee HJ, Kim EK, Kim MJ et al (2008) Observer variability of Breast Imaging Reporting and Data System (BI-RADS) for breast ultrasound. Eur J Radiol 65:293–298.

    Article  PubMed  Google Scholar 

  16. Santana Montesdeoca JM, Gómez Arnáiz A, Fuentes Pavón R et al (2009) Diagnostic accuracy and interobserver variability in the BI-RADS ultrasound system. Radiologia 51:477–486.

    Article  CAS  PubMed  Google Scholar 

  17. Mendelson EB, Baum JK, Berg WA et al (2003) Breast imaging reporting and data system, BI-RADS. American College of Radiology, Reston.

    Google Scholar 

  18. Berg WA, Sechtin AG, Marques H et al (2010) Cystic breast masses and the ACRIN 6666 experience. Radiol Clin North Am 48:931–987.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Gruber R, Jaromi S, Rudas M et al (2012) Histologic work-up of non-palpable breast lesions classified as probably benign at initial mammography and/or ultrasound (BI-RADS category 3). Eur J Radiol [Epub ahead of print].

    Google Scholar 

  20. Fu CY, Hsu HH, Yu JC et al (2010) Influence of age on PPV of sonographic BI-RADS Categories 3, 4, and 5. Ultraschall Med 32:8–13.

    Article  Google Scholar 

  21. Moon HJ, Kim MJ, Kwak JY et al (2010) Probably benign breast lesions on ultrasonography: a retrospective review of ultrasonographic features and clinical factors affecting the BIRADS categorization. Acta Radiol 51:375–382.

    Article  PubMed  Google Scholar 

  22. Moon HJ, Kim MJ, Kwak JY et al (2010) Malignant lesions initially categorized as probably benign breast lesions: retrospective review of ultrasonographic, clinical and pathologic characteristics. Ultrasound Med Biol 36:551–559.

    Article  PubMed  Google Scholar 

  23. Berg WA, Zhang Z, Lehrer D et al; ACRIN 6666 Investigators (2012) Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammo — graphy in women with elevated breast cancer risk. JAMA 07:1394–1404.

    Google Scholar 

  24. El Saghir NS, Anderson BO (2012) Breast cancer early detection and resources: where in the world do we start? The Breast 21:423–425.

    Article  PubMed  Google Scholar 

  25. Mundinger A (2006) Staging the breast and axilla. EJC Supplements 4:35–37.

    Article  Google Scholar 

  26. Lehman CD, DeMartini W, Anderson BO et al (2009) Indications for breast MRI in the patient with newly diagnosed breast cancer. J Natl Compr Canc Netw 7:193–201.

    PubMed  Google Scholar 

  27. Cho N, Moon WK, Cha JH et al (2009) Ultrasound-guided vacuum-assisted biopsy of microcalcifications detected at screening mammography. Acta Radiol 50:602–609.

    Article  PubMed  Google Scholar 

  28. Suh YJ, Kim MJ, Kim EK et al (2012) Comparison of the underestimation rate in cases with ductal carcinoma in situ at ultrasound-guided core biopsy: 14-gauge automated core-needle biopsy vs. 8-or 11-gauge vacuum-assisted biopsy. Br J Radiol 85:e349–356.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Barentsz MW, van Dalen T, Gobardhan PD et al (2012) Intraoperative ultrasound guidance for excision of non-palpable invasive breast cancer: a hospital-based series and an overview of the literature. Breast Cancer Res Treat 135:209–219.

    Article  CAS  PubMed  Google Scholar 

  30. Houssami N, Hayes DF (2009) Review of preoperative magnetic resonance imaging (MRI) in breast cancer: should MRI be performed on all women with newly diagnosed, early stage breast cancer? CA Cancer J Clin 59:290–302.

    Article  PubMed  Google Scholar 

  31. Turnbull L, Brown S, Harvey I et al (2010) Comparative effectiveness of MRI in breast cancer (COMICE) trial: a randomised controlled trial. Lancet 375:563–571.

    Article  PubMed  Google Scholar 

  32. Peters NH, van Esser S, van den Bosch MA et al (2011) Preoperative MRI and surgical management in patients with nonpalpable breast cancer: the MONET — randomised controlled trial. Eur J Cancer 47:879–886.

    Article  CAS  PubMed  Google Scholar 

  33. Tozaki M, Fukuma E (2011) Does power Doppler ultrasono — graphy improve the BI-RADS category assessment and diagnostic accuracy of solid breast lesions? Acta Radiol 52:706–710.

    Article  PubMed  Google Scholar 

  34. Wang X, Xu P, Wang Y, Grant EG (2011) Contrast-enhanced ultrasonographic findings of different histopathologic types of breast cancer. Acta Radiol 52:248–255.

    Article  PubMed  Google Scholar 

  35. Sadigh G, Carlos RC, Neal CH, Dwamena BA (2012) Ultrasonographic differentiation of malignant from benign breast lesions: a meta-analytic comparison of elasticity and BIRADS scoring. Breast Cancer Res Treat 133:23–35.

    Article  PubMed  Google Scholar 

  36. Gong X, Xu Q, Xu Z et al (2011) Real-time elastography for the differentiation of benign and malignant breast lesions: a meta-analysis. Breast Cancer Res Treat 130:11–18.

    Article  PubMed  Google Scholar 

  37. Berg WA, Cosgrove DO, Doré CJ et al for the BE1 Investigators (2012) Shear-wave elastography improves the specificity of breast US: the multinational study of 939 masses. Radiology 262:435–449.

    Article  PubMed  Google Scholar 

  38. Evans A, Whelehan P, Thomson K (2012) Invasive breast cancer: relationship between shear-wave elastographic findings and histologic prognostic factors. Radiology 263:673–677.

    Article  PubMed  Google Scholar 

  39. Prosch H, Halbwachs C, Strobl C et al (2011) Automated breast ultrasound vs. handheld ultrasound: BI-RADS classification, duration of the examination and patient comfort. Ultraschall Med 32:504–510.

    Article  CAS  PubMed  Google Scholar 

  40. Giuliano V, Giuliano C (2012) Improved breast cancer detection in asymptomatic women using 3D-automated breast ultrasound in mammographically dense breasts. Clin Imaging [Epub ahead of print].

    Google Scholar 

  41. Choi YJ, Ko EY, Han BK et al (2009) High-resolution ultrasonographic features of axillary lymph node metastasis in patients with breast cancer. Breast 18:119–122.

    Article  PubMed  Google Scholar 

  42. Alvarez S, Añorbe E, Alcorta P et al (2006) Role of sonography in the diagnosis of axillary lymph node metastases in breast cancer: a systematic review. AJR Am J Roentgenol 186:1342–1348

    Article  PubMed  Google Scholar 

  43. Choi JS, Kim MJ, Moon HJ et al (2012) False negative results of preoperative axillary ultrasound in patients with invasive breast cancer: correlations with clinicopathologic findings. Ultrasound Med Biol 38:1881–1886.

    Article  PubMed  Google Scholar 

  44. Cody HS 3rd, Houssami N (2012) Axillary management in breast cancer: what’s new for 2012? Breast 21:411–415.

    Article  PubMed  Google Scholar 

  45. Pan L, Han Y, Sun X et al (2010) FDG-PET and other imaging modalities for the evaluation of breast cancer recurrence and metastases: a meta-analysis. J Cancer Res Clin Oncol 136:1007–1022.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Britton P, Warwick J, Wallis MG et al (2012). Measuring the accuracy of diagnostic imaging in symptomatic breast patients: team and individual performance. Br J Radiol 85:415–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Mundinger, A. (2014). BI-RADS: Ultrasound Update Including Elastography. Where Do We Stand Now?. In: Hodler, J., von Schulthess, G.K., Kubik-Huch, R.A., Zollikofer, C.L. (eds) Diseases of the Abdomen and Pelvis 2014–2017. Springer, Milano. https://doi.org/10.1007/978-88-470-5659-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5659-6_42

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5658-9

  • Online ISBN: 978-88-470-5659-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics