Advertisement

MR Urography in Children

  • Richard A. Jones
  • J. Damien Grattan-Smith
  • Stephen Little

Abstract

Magnetic resonance urography (MRU) is a powerful clinical tool that fuses anatomic information with functional data in a single test without the use of ionizing radiation. This chapter provides an overview of the technical aspects, as well as common clinical applications, of MRU, with an emphasis on evaluating hydronephrosis. A fluid challenge is an essential part of our MRU protocol and enables the definition of compensated or decompensated kidneys within the spectrum of hydronephrosis. This classification may have prognostic implications when surgery is being considered. In addition, underlying uropathy can be identified on the anatomical scans, and renal scarring can be seen on both anatomical and dynamic scans. MRU can identify and categorize dysmorphic kidneys in vivo and may provide insight into congenital abnormalities seen in conjunction with vesicoureteric reflux (VUR). MRU is still in its infancy, and as the technique develops and becomes widely available, it seems likely that it will supplant renal scintigraphy for evaluating renal tract disorders in children.

Keywords

Glomerular Filtration Rate Arterial Input Function Fluid Challenge Renal Dysplasia Renal Scintigraphy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hackstein N, Heckrodt J, Rau WS (2003) Measurement of single-kidney glomerular filtration rate using a contrast-enhanced dynamic gradient-echo sequence and the Rutland-Patlak plot technique. J Magn Reson Imag 18:714–725.CrossRefGoogle Scholar
  2. 2.
    Annet L, Hermoye L, Peeters F et al (2004) Glomerular filtration rate: assessment with dynamic contrast enhanced MRI and a cortical compartment model in the rabbit kidney. J Magn Reson Imag 20:843–849.CrossRefGoogle Scholar
  3. 3.
    Bokacheva L, Rusinek H, Zhang JL et al (2009) Estimates of glomerular filtration rate from MR renography and tracer kinetic models. J Magn Reson Imag 29:371–382.CrossRefGoogle Scholar
  4. 4.
    Mendichovszky I, Pedersen M, Frøkiær J et al (2008) How accurate is dynamic contrast enhanced MRI in the assessment of renal glomerular filtration rate? A critical appraisal. J Magn Reson Imag 27:925–931.CrossRefGoogle Scholar
  5. 5.
    English PJ, Testa HJ, Lawson RS et al (1987) Modified method of diuresis renography for the assessment of equivocal pelviureteric junction obstruction. Br J Urol 59:10–14.PubMedCrossRefGoogle Scholar
  6. 6.
    Brown SC, Upsdell SM, O’Reilly PH (1992) The importance of renal function in the interpretation of diuresis renography. Br J Urol 69:121–125.PubMedCrossRefGoogle Scholar
  7. 7.
    Vivier PH, Dolores M, Taylor M et al. MR urography in children. Part 1: how we do the F0 technique. Ped Radiol (inpress).Google Scholar
  8. 8.
    Rohrschneider WK, Hoffend J, Becker K et al (2000) Combined static-dynamic MR urography for the simultaneous evaluation of morphology and function in urinary tract obstruction. I. Evaluation of the normal status in an animal model. Pediatr Radiol 30:511–522.PubMedCrossRefGoogle Scholar
  9. 9.
    Rohrschneider WK, Becker K, Hoffend J et al (2000) Combined static-dynamic MR urography for the simultaneous evaluation of morphology and function in urinary tract obstruction. II. Findings in experimentally induced ureteric stenosis. Pediatr Radiol 30:523–532.PubMedCrossRefGoogle Scholar
  10. 10.
    Giesel FL, Von Tengg-Koblig H, Wilkinson ID et al (2006) Influence of human serum albumin on longitudinal and transverse relaxation rates (R1 and R2) of magnetic resonance contrast agents. Invest Radiol 41:222–228.PubMedCrossRefGoogle Scholar
  11. 11.
    Mitterberger M, Pinggera GM, Neururer R et al (2008) Comparison of contrast enhanced colour Doppler imaging (CDI), computed tomography (CT) and magnetic resonance imaging (MRI) for the detection of crossing vessels in patients with ureteropelvic junction obstruction (UPJO). Eur Urol 53:1254–1262.PubMedCrossRefGoogle Scholar
  12. 12.
    Jones RA, Schmotzer B, Little S, Grattan-Smith JD (2008) MRU post-processing. Ped Radiol 38(Suppl. 1):S18–27.CrossRefGoogle Scholar
  13. 13.
    Rusinek H, Boykov Y, Kaur M et al (2007) Performance of an automated segmentation algorithm for 3D MR renography. Magn Reson Med 57:1159–1167.PubMedCrossRefGoogle Scholar
  14. 14.
    Jones RA, Easley K, Little SB et al (2005) Dynamic contrast-enhanced MR urography in the evaluation of pediatric hydronephrosis: Part 1, Functional assessment. AJR Am J Roentgenol 185:1598–1607.PubMedCrossRefGoogle Scholar
  15. 15.
    Parker GJM, Padhani AR (2004) T1-W DCE MRI: T1 weighted dynamic contrast enhanced MRI. In: Toft P (Ed) Quantitative MRI of the brain, 1st edition. Wiley, Chichester, UK, pp 341–344.Google Scholar
  16. 16.
    Mørkenberg J, Taagehø JF, Væver PN et al (1998) In-vivo measurement of T1 and T2 relaxivity in the kidney cortex of the pig-based on a two compartment steady state model. Magn Reson Imag 16:933–942.CrossRefGoogle Scholar
  17. 17.
    Yang C, Karczmar GS, Medved M et al (2009) Reproducibility assessment of a multiple reference tissue method of quantitative dynamic contrast enhanced MRI analysis. Magn Reson Med 61:851–859.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Zhang JL, Rusinek H, Bokacheva L et al (2009) Use of cardiac output to improve measurement of input function in quantitative dynamic contrast enhanced MRI. J Magn Reson Imag 30:656–665.CrossRefGoogle Scholar
  19. 19.
    Pedersen M, Shi Y, Anderson P et al (2004) Quantitation of differential renal blood flow and renal function using dynamic contrast-enhanced MRI in rats. Magn Reson Med 51:510–517.PubMedCrossRefGoogle Scholar
  20. 20.
    Madsen MT (1992) A simplified formulation of the gamma variate function. Phys Med Biol 37:1597–1600.CrossRefGoogle Scholar
  21. 21.
    Weinmann HJ, Laniado M, Mutzel W (1984) Pharmacokinetics of Gd-DTPA/dimeglumine after intraveneous injection into healthy volunteers. Physiol Chem Phys Med 16:167–172.Google Scholar
  22. 22.
    Wedeking P, Eaton S, Covell D et al (1990) Pharmokinetic analysis of blood distribution of intraveneously administered 153-Gd labeled Gd(DTPA)2 and 99M-Tc(DTPA) in rats. Magn Reson Imag 8:567–575.CrossRefGoogle Scholar
  23. 23.
    Hosfield MA, Thornton JS, Gill A et al (2009) A functional form for injected MRI Gd-chelate contrast agent concentration incorporating recirculation, extravasation and excretion. Phys Med Biol 54:2933–2949.CrossRefGoogle Scholar
  24. 24.
    Krier JD, Ritman EL, Bajzer Z et al (2001) Noninvasive measurement of concurrent single-kidney perfusion, glomerular filtration, and tubular function. Am J Physiol Renal Physiol 281:F630–638.PubMedGoogle Scholar
  25. 25.
    Jones RA, Votaw JR, Salman K et al. MRI evaluation of renal structure and function related to disease: Technical review of image acquisition, post-processing and mathematical modeling steps. JMRI (in-press).Google Scholar
  26. 26.
    Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple time uptake data. J Cereb Blood Flow Metab 3:1–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Rutland MD (1979) A single injection technique for subtraction of blood background in 131I-hippuran renograms. Br J Radiol 52:34–137.CrossRefGoogle Scholar
  28. 28.
    Peters AM (1994) Graphical analysis of dynamic data: the Patlak-Rutland plot. Nucl Med Commun 15:669–672.PubMedCrossRefGoogle Scholar
  29. 29.
    Hackstein N, Kooijman H, Tomaselli S, Rau WS (2005) Glomerular filtration rate measured using the Patlak plot technique and contrast-enhanced dynamic MRI with different amounts of gadolinium-DTPA. J Magn Reson Imag 22:406–414.CrossRefGoogle Scholar
  30. 30.
    Buckley DL, Shurrab A, Cheung CM (2006) Measurement of single kidney function using dynamic contrast enhanced MRI: Comparison of two models in human subjects. J Magn Reson Imag 24:1117–1123.CrossRefGoogle Scholar
  31. 31.
    Lassen NA, Perl WP (1979) Tracer kinetic methods in medical physiology. Raven Press, New York, NY.Google Scholar
  32. 32.
    Sourbron, SP, Michaely HJ, Reiser MF, Schoenberg SO (2008) MRI-measurement of perfusion and glomerular filtration in the human kidney with a separable compartment model. Invest Radiol 43:40–48.PubMedCrossRefGoogle Scholar
  33. 33.
    Brandt JR, Wong CS, Hanrahan JD et al (2006) Estimating absolute glomerular filtration rate in children. Ped Nephrol 21:1865–1872.CrossRefGoogle Scholar
  34. 34.
    Jones RA, Perez-Brayfield MR, Kirsch AJ, Grattan-Smith JD (2004) Renal transit time with MR urography in children. Radiology 233:41–50.PubMedCrossRefGoogle Scholar
  35. 37.
    O’Reilly PH. Obstructive uropathy. Q J Nucl Med 2002; 46, 295–303.Google Scholar
  36. 38.
    Peters CA (2010) Congenital urine flow impairments of the upper urinary tract: pathophysiology and experimental studies. In: Pediatric Urology. Elsevier. PhiladelphiaGoogle Scholar
  37. 39.
    Csaicsich D, Greenbaum LA, Aufricht C (2004) Upper urinary tract: when is obstruction obstruction? Curr Opin Urol 14:213–217.PubMedCrossRefGoogle Scholar
  38. 40.
    Eskild-Jensen A, Gordon I, Piepsz A, Frokiaer J (2005) Congenital unilateral hydronephrosis: a review of the impact of diuretic renography on clinical treatment. J Urol 173:1471–1476.PubMedCrossRefGoogle Scholar
  39. 41.
    Chertin B, Pollack A, Koulikov D, et al (2006) Conservative treatment of ureteropelvic junction obstruction in children with antenatal diagnosis of hydronephrosis: lessons learned after 16 years of follow-up. Eur Urol 49:734–738; discussion 739.PubMedCrossRefGoogle Scholar
  40. 42.
    Ulman I, Jayanthi VR, Koff SA (2000) The long-term followup of newborns with severe unilateral hydronephrosis initially treated nonoperatively. J Urol 164:1101–1105.PubMedCrossRefGoogle Scholar
  41. 43.
    Koff SA (1990) Pathophysiology of ureteropelvic junction obstruction. Clinical and experimental observations. Urol Clin North Am 17:263–272.PubMedGoogle Scholar
  42. 44.
    Fernbach SK, Maizels M, Conway JJ (1993) Ultrasound grading of hydronephrosis: introduction to the system used by the Society for Fetal Urology. Pediatr Radiol 23:478–480.PubMedCrossRefGoogle Scholar
  43. 45.
    Elder JS, Stansbrey R, Dahms BB, Selzman AA (1995) Renal histological changes secondary to ureteropelvic junction obstruction. J Urol 154:719–722.PubMedCrossRefGoogle Scholar
  44. 46.
    Little SB, Jones RA, Grattan-Smith JD (2008) Evaluation of UPJ obstruction before and after pyeloplasty using MR urography. Pediatr Radiol 38 Suppl 1:S106–124.PubMedCrossRefGoogle Scholar
  45. 47.
    Bailey RR (1973) The relationship of vesico-ureteric reflux to urinary tract infection and chronic pyelonephritis-reflux nephropathy. Clin Nephrol 1:132–141.PubMedGoogle Scholar
  46. 48.
    Fanos V, Cataldi L (2004) Antibiotics or surgery for vesicoureteric reflux in children. Lancet 364:1720–1722.PubMedCrossRefGoogle Scholar
  47. 49.
    Marra G, Oppezzo C, Ardissino G et al (2004) Severe vesicoureteral reflux and chronic renal failure: a condition peculiar to male gender? Data from the ItalKid Project. J Pediatr 144:677–681.PubMedCrossRefGoogle Scholar
  48. 50.
    Greenfield SP, Wan J (2010) The diagnosis and medical management of primary vesicoureteral reflux. In: Pediatric Urology. Elsevier, Philadelphia.Google Scholar
  49. 51.
    Yeung CK, Godley ML, Dhillon HK et al (1997) The characteristics of primary vesico-ureteric reflux in male and female infants with pre-natal hydronephrosis. Br J Urol 80:319–327.PubMedCrossRefGoogle Scholar
  50. 52.
    Woolf AS, Price KL, Scambler PJ, Winyard PJ (2004) Evolving concepts in human renal dysplasia. J Am Soc Nephrol 15:998–1007.PubMedCrossRefGoogle Scholar
  51. 53.
    Barkovich AJ, Kuzniecky RI (1996) Neuroimaging of focal malformations of cortical development. J Clin Neurophysiol 13:481–494.PubMedCrossRefGoogle Scholar
  52. 54.
    Costantini F (2006) Renal branching morphogenesis: concepts, questions, and recent advances. Differentiation 74:402–421.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2014

Authors and Affiliations

  • Richard A. Jones
    • 1
    • 2
  • J. Damien Grattan-Smith
    • 1
    • 2
  • Stephen Little
    • 1
  1. 1.Department of RadiologyChildren’s Healthcare of AtlantaAtlantaUSA
  2. 2.Department of RadiologyEmory University School of MedicineAtlantaUSA

Personalised recommendations