Advertisement

PET Imaging in Prostate Cancer

  • H. Alberto Vargas

Abstract

Positron emission tomography (PET) is a highly sensitive tool for detecting and quantifying molecular activity throughout the body, and its use in oncology is now widespread. PET imaging is based on the detection of probes that consist at minimum of a targeting agent (e.g., an antibody, peptide, or small molecule) and a positron-emitting radionuclide that provides the signal for imaging. A variety of radionuclides with different half-lives are available for labeling, including fluorine 18 (18F), carbon 11 (11C), nitrogen 13 (13N), iodine 124 (124I), zirconium 89 (89Zr), and copper 64 (64Cu), and different radionuclides may be used to label the same targeting agent. The glucose analog fluorodeoxyglucose (FDG), labeled with 18F, is at present the most common PET radiotracer used in routine clinical care. However, a number of other probes now in the pipeline promise to significantly expand the role of PET in prostate cancer management. Furthermore, prostate-specific probes that can be imaged with PET have been identified and are undergoing clinical translation.

Keywords

Prostate Cancer Positron Emission Tomography Androgen Receptor Positron Emission Tomography Imaging Prostate Stem Cell Antigen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Macheda ML, Rogers S, Best JD (2005) Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 202:654–662.PubMedCrossRefGoogle Scholar
  2. 2.
    Reinicke K, Sotomayor P, Cisterna P et al (2012) Cellular distribution of Glut-1 and Glut-5 in benign and malignant human prostate tissue. J Cell Biochem 113:553–562.PubMedCrossRefGoogle Scholar
  3. 3.
    Meirelles GS, Schoder H, Ravizzini GC et al (2010) Prognostic value of baseline [18F] fluorodeoxyglucose positron emission tomography and 99mTc-MDP bone scan in progressing metastatic prostate cancer. Clin Cancer Res 16:6093–6099.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Morris MJ, Akhurst T, Larson SM et al (2005) Fluorodeoxyglucose positron emission tomography as an outcome measure for castrate metastatic prostate cancer treated with antimicrotubule chemotherapy. Clin Cancer Res 11:3210–3216.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Shiiba M, Ishihara K, Kimura G et al (2012) Evaluation of primary prostate cancer using 11C-methionine-PET/CT and 18-FFDG-PET/CT. Ann Nucl Med 26:138–145.PubMedCrossRefGoogle Scholar
  6. 6.
    Schoder H, Herrmann K, Gonen M et al (2005) 2-[18F]fluoro-2-deoxyglucose positron emission tomography for the detection of disease in patients with prostate-specific antigen relapse after radical prostatectomy. Clin Cancer Res 11:4761–4769.PubMedCrossRefGoogle Scholar
  7. 7.
    Even-Sapir E, Metser U, Mishani E et al (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single-and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47:287–297.PubMedGoogle Scholar
  8. 8.
    Cook G, Jr., Parker C, Chua S et al (2011) 18F-fluoride PET: changes in uptake as a method to assess response in bone metastases from castrate-resistant prostate cancer patients treated with 223Ra-chloride (Alpharadin). EJNMMI Res 1:4.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Wade AA, Scott JA, Kuter I, Fischman AJ (2006) Flare response in 18F-fluoride ion PET bone scanning. AJR Am J Roentgenol 186:1783–1786.PubMedCrossRefGoogle Scholar
  10. 10.
    Contractor K, Challapalli A, Barwick T et al (2011) Use of [11C]choline PET-CT as a noninvasive method for detecting pelvic lymph node status from prostate cancer and relationship with choline kinase expression. Clin Cancer Res 17:7673–7683.PubMedCrossRefGoogle Scholar
  11. 11.
    Scher B, Seitz M, Albinger W et al (2007) Value of 11C-choline PET and PET/CT in patients with suspected prostate cancer. Eur J Nucl Med Mol Imaging 34:45–53.PubMedCrossRefGoogle Scholar
  12. 12.
    Martorana G, Schiavina R, Corti B et al (2006) 11C-choline positron emission tomography/computerized tomography for tumor localization of primary prostate cancer in comparison with 12-core biopsy. J Urol 176:954–960.PubMedCrossRefGoogle Scholar
  13. 13.
    Picchio M, Briganti A, Fanti S et al (2011) The role of choline positron emission tomography/computed tomography in the management of patients with prostate-specific antigen progression after radical treatment of prostate cancer. Eur Urol 59:51–60.PubMedCrossRefGoogle Scholar
  14. 14.
    Picchio M, Crivellaro C, Giovacchini G et al (2009) PET-CT for treatment planning in prostate cancer. Q J Nucl Med Mol Imaging 53:245–268.PubMedGoogle Scholar
  15. 15.
    Kotzerke J, Volkmer BG, Glatting G et al (2003) Intraindividual comparison of [11C]acetate and [11C]choline PET for detection of metastases of prostate cancer. Nuklearmedizin 42:25–30.PubMedGoogle Scholar
  16. 16.
    Wondergem M, van der Zant FM, van der Ploeg T, Knol RJ (2013) A literature review of 18F-fluoride PET/CT and 18F-choline or 11C-choline PET/CT for detection of bone metastases in patients with prostate cancer. Nucl Med Commun 34:935–945.PubMedCrossRefGoogle Scholar
  17. 17.
    Beheshti M, Vali R, Waldenberger P et al (2010) The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT. Mol Imaging Biol 12:98–107.PubMedCrossRefGoogle Scholar
  18. 18.
    Matthies A, Ezziddin S, Ulrich EM et al (2004) Imaging of prostate cancer metastases with 18F-fluoroacetate using PET/CT. Eur J Nucl Med Mol Imaging 31:797.PubMedCrossRefGoogle Scholar
  19. 19.
    Kato T, Tsukamoto E, Kuge Y et al (2002) Accumulation of [11C]acetate in normal prostate and benign prostatic hyperplasia: comparison with prostate cancer. Eur J Nucl Med Mol Imaging 29:1492–1495.PubMedCrossRefGoogle Scholar
  20. 20.
    Kotzerke J, Volkmer BG, Neumaier B (2002) Carbon-11 acetate positron emission tomography can detect local recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 29:1380–1384.PubMedCrossRefGoogle Scholar
  21. 21.
    Sandblom G, Sorensen J, Lundin N et al (2006) Positron emission tomography with C11-acetate for tumor detection and localization in patients with prostate-specific antigen relapse after radical prostatectomy. Urol 67:996–1000.PubMedCrossRefGoogle Scholar
  22. 22.
    Oyama N, Miller TR, Dehdashti F et al (2003) 11C-Acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 44:549–555.PubMedGoogle Scholar
  23. 23.
    Shields AF, Grierson JR, Dohmen BM et al (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4:1334–1336.PubMedCrossRefGoogle Scholar
  24. 24.
    Kukuk D, Reischl G, Raguin O et al (2011) Assessment of PET tracer uptake in hormone-independent and hormone-dependent xenograft prostate cancer mouse models. J Nuclear Med 52:1654–1663.CrossRefGoogle Scholar
  25. 25.
    Tehrani OS, Douglas KA, Lawhorn-Crews JM, Shields AF (2008) Tracking cellular stress with labeled FMAU reflects changes in mitochondrial TK2. Eur J Nucl Med Mol Imaging 35:1480–1488.PubMedCrossRefGoogle Scholar
  26. 26.
    Sun H, Sloan A, Mangner TJ et al (2005) Imaging DNA synthesis with [18F]FMAU and positron emission tomography in patients with cancer. Eur J Nucl Med Mol Imaging 32:15–22.PubMedCrossRefGoogle Scholar
  27. 27.
    Azzouni F, Mohler J (2012) Biology of castration-recurrent prostate cancer. Urol Clin North Am 39:435–452.PubMedCrossRefGoogle Scholar
  28. 28.
    Larson SM, Morris M, Gunther I et al (2004) Tumor localization of 16beta-18F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med 45:366–373.PubMedGoogle Scholar
  29. 29.
    Fox JJ, Autran-Blanc E, Morris MJ et al (2011) Practical approach for comparative analysis of multilesion molecular imaging using a semiautomated program for PET/CT. J Nucl Med 52:1727–1732.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Scher HI, Beer TM, Higano CS et al (2010) Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1–2 study. Lancet 375:1437–1446.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Macapinlac HA, Humm JL, Akhurst T et al (1999) Differential metabolism and pharmacokinetics of L-[1-(11)C]-methionine and 2-[(18)F] fluoro-2-deoxy-D-glucose (FDG) in androgen independent prostate cancer. Clin Positron Imaging 2:173–181.PubMedCrossRefGoogle Scholar
  32. 32.
    Oka S, Hattori R, Kurosaki F et al (2007) A preliminary study of anti-1-amino-3-18F-fluorocyclobutyl-1-carboxylic acid for the detection of prostate cancer. J Nucl Med 48:46–55.PubMedGoogle Scholar
  33. 33.
    Schuster DM, Votaw JR, Nieh PT et al (2007) Initial experience with the radiotracer anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J Nucl Med 48:56–63.PubMedGoogle Scholar
  34. 34.
    Ruggiero A, Holland JP, Hudolin T et al (2011) Targeting the internal epitope of prostate-specific membrane antigen with 89Zr-7E11 immuno-PET. J Nucl Med 52:1608–1615.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Liu H, Moy P, Kim S et al (1997) Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res 57:3629–3634.PubMedGoogle Scholar
  36. 36.
    Holland JP, Divilov V, Bander NH et al (2010) 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J Nucl Med 51:1293–1300.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Cho SY, Gage KL, Mease RC et al (2012) Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a lowmolecular-weight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer. J Nucl Med 53:1883–1891.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Song KM, Lee S, Ban C (2012) Aptamers and their biological applications. Sensors 12:612–631.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Rockey WM, Huang L, Kloepping KC (2011) Synthesis and radiolabeling of chelator-RNA aptamer bioconjugates with copper-64 for targeted molecular imaging. Bioorg Med Chem 19:4080–4090.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Ulmert D, Evans MJ, Holland JP et al (2012). Imaging androgen receptor signaling with a radiotracer targeting free prostatespecific antigen. Cancer discovery 2:320–327.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Lepin EJ, Leyton JV, Zhou Y et al (2010) An affinity matured minibody for PET imaging of prostate stem cell antigen (PSCA)-expressing tumors. Eur J Nucl Med Mol Imaging 37:1529–1538.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Smith CJ (2003) Radiochemical investigations of gastrin-releasing peptide receptor-specific [(99m)Tc(X)(CO)3-Dpr-Ser-Ser-Ser-Gln-Trp-Ala-Val-Gly-His-Leu-Met-(NH2)] in PC-3, tumor-bearing, rodent models: syntheses, radiolabeling, and in vitro/in vivo studies where Dpr = 2,3-diaminopropionic acid and X = H2O or P(CH2OH)3. Cancer Res (Baltimore) 63:4082–4088.Google Scholar

Copyright information

© Springer-Verlag Italia 2014

Authors and Affiliations

  • H. Alberto Vargas
    • 1
  1. 1.RadiologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations