Skip to main content
  • 1121 Accesses

Abstract

Multidetector computed tomography (MDCT) and magnetic resonance (MR) imaging technology offers detailed insights into liver anatomy and the pathophysiology of liver disease in a way that has turned imaging into the pacemaker for the development of new therapeutic techniques. Understanding different imaging techniques and the diagnostic potential of different modalities, including contrast material utilization, is essential to optimize patient diagnoses. In the environment of cost containment, the most appropriate modality should be chosen to answer the clinical question. Ultrasonography (US) is a widely available, noninvasive, and least expensive imaging modality, but it is limited by low sensitivity and specificity unless contrast agents are used. Contrast-enhanced MDCT has emerged as the modality of choice for routine liver imaging. MR imaging is used primarily as a problem-solving technique for liver evaluation when MDCT or US is equivocal or if concern exists for malignancy in certain high-risk populations.

In this chapter, figs. 2, 3, 5, 6, 9, 10, 13, 15, 17, 18, 20 are reproduced from Schima W, Baron R (2010) Focal liver lesions. In: Hodler J, von Schulthess GK, Zollikofer ChL (Eds) Diseases of the Adomen and Pelvis 2010–2013._Springer-Verlag Italia, Milano, pp. 63–74.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laghi A (2007) Multidetector CT (64 Slices) of the liver: examination techniques. Eur Radiol 17:675–683.

    Article  PubMed  Google Scholar 

  2. Weg N, Scheer MR, Gabor MP (1998) Liver lesions: improved detection with dual-detector-array CT and routine 2.5-mm thin collimation. Radiology 209:417–426.

    Article  CAS  PubMed  Google Scholar 

  3. Ichikawa T, Nakajima H, Nanbu A et al (2006) Effect of injection rate of contrast material on CT of hepatocellular carcinoma. AJR Am J Roentgenol 186:1413–1418.

    Article  PubMed  Google Scholar 

  4. Foley WD, Hoffmann RG, Quiroz FA et al (1994) Hepatic helical CT: contrast material injection protocol. Radiology 192:367–371.

    Article  CAS  PubMed  Google Scholar 

  5. Kim T, Murakami T, Takahashi S et al (1998) Effects of injection rates of contrast material on arterial phase hepatic CT. AJR Am J Roentgenol 171:429–432.

    Article  CAS  PubMed  Google Scholar 

  6. Schima W, Hammerstingl R, Catalano C et al (2006) Quadruple-phase MDCT of the liver in patients with suspected hepatocellular carcinoma: effect of contrast material flow rate. AJR Am J Roentgenol 186:1571–1579.

    Article  PubMed  Google Scholar 

  7. Sultana S, Awai K, Nakayama Y et al (2007) Hypervascular hepatocellular carcinomas: bolus tracking with a 40-detector CT scanner to time arterial phase imaging. Radiology 243:140–147.

    Article  PubMed  Google Scholar 

  8. Oliver JH, Baron RL (1996) Helical biphasic contrast-enhanced CT of the liver: technique, indications, interpretations, and pitfalls. Radiology 201:1–14.

    Article  PubMed  Google Scholar 

  9. Vardhanabhuti V, Loader R, Roobottom CA (2013) Assessment of image quality on effects of varying tube voltage and automatic tube current modulation with hybrid and pure iterative reconstruction techniques in abdominal/pelvic CT: a phantom study. Invest Radiol 48:167–174.

    Article  PubMed  Google Scholar 

  10. Singh S, Kalra M, Hsieh J et al (2010) Abdominal CT: comparison of adaptive statistical iterative and filtered back projection reconstruction techniques. Radiology 257:373–383.

    Article  PubMed  Google Scholar 

  11. May MS, Wüst W, Brand M et al (2011) Dose reduction in abdominal computed tomography: intraindividual comparison of image quality of full-dose standard and half-dose iterative reconstructions with dual-source computed tomography. Invest Radiol 46:465–470.

    Article  PubMed  Google Scholar 

  12. Gonzalez-Guindalini FD, Botelho MP, Töre HG et al (2013) MDCT of chest, abdomen, and pelvis using attenuation-based automated tube voltage selection in combination with iterative reconstruction: an intrapatient study of radiation dose and image quality. AJR Am J Roentgenol 201:1075–1082.

    Article  PubMed  Google Scholar 

  13. Fuentes-Orrego JM, Hayano K, Kambadakone AR et al (2013) Dose-modified 256-MDCT of the abdomen using low tube current and hybrid iterative reconstruction. Acad Radiol 20:1405–1412.

    Article  PubMed  Google Scholar 

  14. Padhani AR, Liu G, Chenevert TL et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Koh DM, Brown G, Riddell AM et al (2008) Detection of colorectal hepatic metastases using MnDPDP MR imaging and diffusion-weighted imaging (DWI) alone and in combination. Eur Radiol 18:903–910.

    Article  CAS  PubMed  Google Scholar 

  16. Holzapfel K, Reiser-Erkan C, Fingerle AA et al (2011) Comparison of diffusion-weighted MR imaging and multidetectorrow CT in the detection of liver metastases in patients operated for pancreatic cancer. Abdom Imaging 36:179–184.

    Article  PubMed  Google Scholar 

  17. Vandecaveye V, De Keyzer F, Verslype C et al (2009) Diffusionweighted MRI provides additional value to conventional dynamic contrast-enhanced MRI for detection of hepatocellular carcinoma. Eur Radiol 19:2456–2466.

    Article  PubMed  Google Scholar 

  18. Parikh T, Drew SJ, Lee VS et al (2008) Focal liver lesion detection and characterization with diffusion-weighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology 246:812–822.

    Article  PubMed  Google Scholar 

  19. Taouli B (2012) Diffusion-weighted MR imaging for liver lesion characterization: a critical look. Radiology 262:378–380.

    Article  PubMed  Google Scholar 

  20. Oudkerk M, Torres CG, Song B et al (2002) Characterization of liver lesions with mangafodipir trisodium-enhanced MR imaging: multicenter study comparing MR and dual-phase spiral CT. Radiology 223:517–524.

    Article  PubMed  Google Scholar 

  21. Scharitzer M, Schima W, Schober E et al (2005) Characterization of hepatocellular tumors: value of mangafodipir-enhanced magnetic resonance imaging. J Comput Assist Tomogr 29:181–190.

    Article  PubMed  Google Scholar 

  22. Ward J, Robinson PJ, Guthrie JA et al (2005) Liver metastases in candidates for hepatic resection: comparison of helical CT and gadolinium-and SPIO-enhanced imaging. Radiology 237:170–180.

    Article  PubMed  Google Scholar 

  23. Hammerstingl R, Huppertz A, Breuer J et al (2008) Diagnostic efficacy of gadoxetic acid (Primovist)-enhanced MRI and spiral CT for a therapeutic strategy: comparison with intraoperative and histopathologic findings in focal liver lesions. Eur Radiol 18:457–467.

    Article  PubMed  Google Scholar 

  24. Schima W, Saini S, Echeverri JA et al (1997) T2-weighted MR imaging for characterization of focal liver lesions: conventional spin-echo vs fast spin-echo. Radiology 202:389–393.

    Article  CAS  PubMed  Google Scholar 

  25. Farraher SW, Jara H, Chang KJ et al (2006) Differentiation of hepatocellular carcinoma and hepatic metastasis from cysts and hemangiomas with calculated T2 relaxation times and the T1/T2 relaxation times ratio. J Magn Reson Imaging 24:1333–1341.

    Article  PubMed  Google Scholar 

  26. Semelka RC, Brown ED, Ascher SM et al (1994) Hepatic hemangiomas: a multi-institutional study of appearance on T2-weighted and serial gadolinium-enhanced gradient-echo MR images. Radiology 192:401–406.

    Article  CAS  PubMed  Google Scholar 

  27. Oto A, Kulkarni K, Nishikawa R, Baron RL (2010) Contrast enhancement of hepatic hemangiomas on multiphase MDCT: can we diagnose hepatic hemangiomas by comparing enhancement with blood pool? AJR Am J Roentgenol 195:381–386.

    Article  PubMed  Google Scholar 

  28. Ba-Ssalamah A, Uffmann M, Saini S et al (2009) Clinical value of MRI liver-specific contrast agents: a tailored examination for a confident noninvasive diagnosis of focal liver lesions. Eur Radiol 19:342–357.

    Article  PubMed  Google Scholar 

  29. Vossen JA, Buijs M, Liapi E et al (2008) Receiver operating characteristic analysis of diffusion-weighted magnetic resonance imaging in differentiating hepatic hemangioma from other hypervascular liver lesions. J Comput Assist Tomogr 32:750–756.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Kehagias D, Moulopoulos L, Antoniou A et al (2001) Focal nodular hyperplasia: imaging findings. Eur Radiol 11:202–212.

    Article  CAS  PubMed  Google Scholar 

  31. Brancatelli G, Federle MP, Grazioli L et al (2001) Focal nodular hyperplasia: CT findings with emphasis on multiphasic helical CT in 78 patients. Radiology 219:61–68.

    Article  CAS  PubMed  Google Scholar 

  32. Uggowitzer MM, Kugler C, Mischinger HJ et al (1999) Echoenhanced Doppler sonography of focal nodular hyperplasia of the liver. J Ultrasound Med 18:445–451.

    CAS  PubMed  Google Scholar 

  33. Purysko AS, Remer EM, Coppa CP et al (2012) Characteristics and distinguishing features of hepatocellular adenoma and focal nodular hyperplasia on gadoxetate disodium-enhanced MRI. AJR Am J Roentgenol 198:115–123.

    Article  PubMed  Google Scholar 

  34. Leconte I, Van Beers BE, Lacrosse M et al (2000) Focal nodular hyperplasia: natural course observed with CT and MRI. J Comput Assist Tomogr 24:61–66.

    Article  CAS  PubMed  Google Scholar 

  35. Mathieu D, Kobeiter H, Maison P et al (2000) Oral contraceptive use and focal nodular hyperplasia of the liver. Gastroenterology 118:560–564.

    Article  CAS  PubMed  Google Scholar 

  36. Prasad SR, Sahani DV, Mino-Kenudson M et al (2008) Benign hepatic neoplasms: an update on cross-sectional imaging spectrum. J Comput Assist Tomogr 32:829–840.

    Article  PubMed  Google Scholar 

  37. Grazioli L, Morana G, Kirchin MA, Schneider G (2005) Accurate differentiation of focal nodular hyperplasia from hepatic adenoma at gadobenate dimeglumine-enhanced MR imaging: prospective study. Radiology 236:166–177.

    Article  PubMed  Google Scholar 

  38. Grazioli L, Bondioni MP, Haradome H et al (2012) Hepatocellular adenoma and focal nodular hyperplasia: value of gadoxetic acid-enhanced MR imaging in differential diagnosis. Radiology 262:520–529.

    Article  PubMed  Google Scholar 

  39. Katabathina VS, Menias CO, Shanbhogue AK et al (2011) Genetics and imaging of hepatocellular adenomas: 2011 update. Radiographics 31:1529–1543.

    Article  PubMed  Google Scholar 

  40. van Aalten SM, Thomeer MG, Terkivatan T et al (2011) Hepatocellular adenomas: correlation of MR imaging findings with pathologic subtype classification. Radiology 261:172–181.

    Article  PubMed  Google Scholar 

  41. Semelka RC, Hussain SM, Marcos HB, Woosley JT (1999) Biliary hamartomas: solitary and multiple lesions shown on current MR techniques including gadolinium enhancement. J Magn Reson Imaging 10:196–201.

    Article  CAS  PubMed  Google Scholar 

  42. Martin DR, Kalb B, Sarmiento JM et al (2010) Giant and complicated variants of cystic bile duct hamartomas of the liver: MRI findings and pathological correlations. J Magn Reson Imaging 31:903–911.

    Article  PubMed  Google Scholar 

  43. Jeffrey RB, Jr., Tolentino CS, Chang FC, Federle MP (1988) CT of small pyogenic hepatic abscesses: the cluster sign. AJR Am J Roentgenol 151:487–489.

    Article  PubMed  Google Scholar 

  44. Barreda R, Ros PR (1992) Diagnostic imaging of liver abscess. Crit Rev Diagn Imaging 33:29–58.

    CAS  PubMed  Google Scholar 

  45. Laghi A, Iannaccone R, Rossi P et al (2003) Hepatocellular carcinoma: detection with triple-phase multi-detector row helical CT in patients with chronic hepatitis. Radiology 226:543–549.

    Article  PubMed  Google Scholar 

  46. Ichikawa T, Kitamura T, Nakajima H et al (2002) Hypervascular hepatocellular carcinoma: can double arterial phase imaging with multidetector CT improve tumor depiction in the cirrhotic liver? AJR Am J Roentgenol 179:751–758.

    Article  PubMed  Google Scholar 

  47. Monzawa S, Ichikawa T, Nakajima H et al (2007) Dynamic CT for detecting small hepatocellular carcinoma: usefulness of delayed phase imaging. AJR Am J Roentgenol 188:147–153.

    Article  PubMed  Google Scholar 

  48. Iannacone R, Laghi A, Catalano C et al (2005) Hepatocellular carcinoma: role of unenhanced and delayed-phase multi-detector row helical CT in patients with cirrhosis. Radiology 234:460–467.

    Article  Google Scholar 

  49. Baron RL, Brancatelli G (2004) Computed tomographic imaging of hepatocellular carcinoma. Gastroenterology 127:S133–143.

    Article  PubMed  Google Scholar 

  50. Forner A, Vilana R, Ayuso C et al (2008) Diagnosis of hepatic nodules 20 mm or smaller in cirrhosis: Prospective validation of the noninvasive diagnostic criteria for hepatocellular carcinoma. Hepatology 47:97–104.

    Article  PubMed  Google Scholar 

  51. Tublin ME, Dodd GD, Baron RL (1997) Benign and malignant portal vein thrombosis: differentiation by CT characteristics. AJR Am J Roentgenol 168:719–723.

    Article  CAS  PubMed  Google Scholar 

  52. Stevens WR, Gulino SP, Batts KP et al (1996) Mosaic pattern of hepatocellular carcinoma: histologic basis for a characteristic CT appearance. J Comput Assist Tomogr 20:337–342.

    Article  CAS  PubMed  Google Scholar 

  53. Kim TK, Lee KH, Jang JJ et al (2011) Analysis of gadobenate dimeglumine-enhanced MR findings for characterizing small (1–2-cm) hepatic nodules in patients at high risk for hepatocellular carcinoma. Radiology 259:730–738.

    Article  PubMed  Google Scholar 

  54. Choi JW, Lee JM, Kim SJ et al (2013) Hepatocellular carcinoma: imaging patterns on gadoxetic acid-enhanced MR Images and their value as an imaging biomarker. Radiology 267:776–786.

    Article  PubMed  Google Scholar 

  55. Lee MH, Kim SH, Park MJ et al (2011) Gadoxetic acid-enhanced hepatobiliary phase MRI and high-b-value diffusionweighted imaging to distinguish well-differentiated hepatocellular carcinomas from benign nodules in patients with chronic liver disease. AJR Am J Roentgenol 197:W868–875.

    Article  PubMed  Google Scholar 

  56. Bruix J, Sherman M (2011) Management of hepatocellular carcinoma: an update. Hepatology 53:1020–1022.

    Article  PubMed Central  PubMed  Google Scholar 

  57. McEvoy SH, McCarthy CJ, Lavelle LP et al (2013) Hepatocellular carcinoma: illustrated guide to systematic radiologic diagnosis and staging according to guidelines of the American Association for the Study of Liver Diseases. Radiographics 33:1653–1668.

    Article  PubMed  Google Scholar 

  58. Ichikawa T, Federle MP, Grazioli L et al (1999) Fibrolamellar hepatocellular carcinoma: imaging and pathologic findings in 31 recent cases. Radiology 213:352–361.

    Article  CAS  PubMed  Google Scholar 

  59. Ichikawa T, Federle MP, Grazioli L, Marsh W (2000) Fibrolamellar hepatocellular carcinoma: pre-and posttherapy evaluation with CT and MR imaging. Radiology 217:145–151.

    Article  CAS  PubMed  Google Scholar 

  60. Lim JH (2003) Cholangiocarcinoma: morphologic classification according to growth pattern and imaging findings. AJR Am J Roentgenol 181:819–827.

    Article  PubMed  Google Scholar 

  61. Han JK, Choi BI, Kim AY et al (2002) Cholangiocarcinoma: pictorial essay of CT and cholangiographic findings. Radiographics 22:173–187.

    Article  PubMed  Google Scholar 

  62. Lee WJ, Lim HK, Jang KM et al (2001) Radiologic spectrum of cholangiocarcinoma: emphasis on unusual manifestations and differential diagnoses. Radiographics 21 Spec No:S97–S116.

    Article  PubMed  Google Scholar 

  63. Buetow PC, Buck JL, Pantongrag-Brown L et al (1995) Biliary cystadenoma and cystadenocarcinoma: clinical-imagingpathologic correlations with emphasis on the importance of ovarian stroma. Radiology 196:805–810.

    Article  CAS  PubMed  Google Scholar 

  64. Peterson MS, Baron RL, Rankin SC (2000) Hepatic angiosarcoma: findings on multiphasic contrast-enhanced helical CT do not mimic hepatic hemangioma. AJR Am J Roentgenol 175:165–170.

    Article  CAS  PubMed  Google Scholar 

  65. Koyama T, Fletcher JG, Johnson CD et al (2002) Primary hepatic angiosarcoma: findings at CT and MR imaging. Radiology 222:667–673.

    Article  PubMed  Google Scholar 

  66. Miller WJ, Dodd GD, 3rd, Federle MP, Baron RL (1992) Epithelioid hemangioendothelioma of the liver: imaging findings with pathologic correlation. AJR Am J Roentgenol 159:53–57.

    Article  CAS  PubMed  Google Scholar 

  67. Schima W, Kulinna C, Langenberger H, Ba-Ssalamah A (2005) Liver metastases of colorectal cancer: US, CT or MR? Cancer Imaging 5 Spec No A:S149–156.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Lee MJ, Saini S, Compton CC, Malt RA (1991) MR demonstration of edema adjacent to a liver metastasis: pathologic correlation. AJR Am J Roentgenol 157:499–501.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Schima, W., Baron, R. (2014). Focal Liver Lesions. In: Hodler, J., von Schulthess, G.K., Kubik-Huch, R.A., Zollikofer, C.L. (eds) Diseases of the Abdomen and Pelvis 2014–2017. Springer, Milano. https://doi.org/10.1007/978-88-470-5659-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5659-6_12

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5658-9

  • Online ISBN: 978-88-470-5659-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics