Skip to main content

Problemi legati ai trattamenti farmacologici

  • Chapter
Patologia e avversità dell’alveare
  • 443 Accesses

Riassunto

L’apicoltura, intesa come attività zootecnica, prevede l’allevamento e la selezione delle colonie di api per caratteristiche produttive e comportamentali che non sono necessariamente in armonia con le loro strategie di sopravvivenza naturale. Di conseguenza, le api in allevamento mostrano, in genere, un comportamento meno efficiente in condizioni di stress nutrizionali e ambientali e il loro sistema immunitario viene più facilmente compromesso da sostanze tossiche presenti nell’ambiente [1]. La selezione operata dall’uomo per caratteri di interesse economico immediato, quindi, non è sempre in linea con una maggiore rappresentatività, nelle api, di quei geni responsabili dei meccanismi di resistenza; in ogni caso, tutte quelle pratiche (messa a sciame, chemioterapia, ecc.) atte a salvare le colonie colpite da malattia (peste americana, varroatosi, ecc.) non consentono l’eliminazione degli individui “probabilmente” più recettivi e, di conseguenza, la distinzione da quelli “probabilmente” più resistenti.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Nazzi F, Brown SP, Annoscia D et al (2012) Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PLoS Pathog 8(6):e1002735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Georghiou GP, Taylor CE (1977) Genetic and biological influences in the evolution of insecticide resistance. J Econ Entomol 70:319–323

    CAS  PubMed  Google Scholar 

  3. Georghiou GP, Taylor CE (1986) Factors influencing the evolution of resistance. Pesticide resistance: strategies and tactics for management. National Academy Press, Washington DC, pp 157–169

    Google Scholar 

  4. Lodesani M, Costa C (2005) Limits of chemotherapy in beekeeping: development of resistance and the problem of residues. Bee World 86(4):102–109

    Google Scholar 

  5. Roush RT, Mckenzie JA (1987) Ecological genetics of insecticide and acaricide resistance. Ann Rev Entomol 32:361–380

    Article  CAS  Google Scholar 

  6. Denholm I, Rowland MW (1992) Tactics for managing pesticide resistance in arthropods: theory and practice. Ann Rev Entomol 37:91–112

    Article  CAS  Google Scholar 

  7. Foster PL (1993) Adaptive mutation: the uses of adversity. Ann Rev Microbiol 47:467–504

    Article  CAS  Google Scholar 

  8. Rivera-Tapia JA (2003) Antibiotic resistance, public health problem. Anales Medicos Association Medicines Hospital ABC 48(1):42–47

    Google Scholar 

  9. Barriga AG, Rojas ML, Peredo LV (2001) Actualidades en los patrones de resistencia a los antimicrobianos. Review Mexican Pathology Clinic 48:65–69

    Google Scholar 

  10. Dowson CG, Hutchison A, Brannigan JA et al (1989) Horizontal transfer of penicillin-binding genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Proc Nat Acad Sci USA 86(22):8842–8846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Piras CC (2012) Antibiotici in zootecnia: Abuso e farmacoresistenza. www.incaweb.org/green/n0028/pdf/bassa/Green28-Piras%20(72dpi).pdf http://www.incaweb.org/green/n0028/pdf/bassa/Green28-Piras%20(72dpi).pdf.. Accessed 01 October 2013

  12. Mixagi T, Peng C Y, Cuang RY et al (2000) Verification of oxytetracycline-resistant American foulbrood pathogen Paenibacillus larvae in the United States. J Invertebr Pathol 75:95–96

    Article  Google Scholar 

  13. Hornitzky MA (2005) Oxytetracycline sensitivity of Paenibacillus larvae. subsp. Larvae isolates. Rural Industries Research and Development Corporation, Kingston, Publication 05/021

    Google Scholar 

  14. Arthopod pesticide Resistance Database, Michigan State University. http://www.pesticidere-sistance.org/. Accessed 04 October 2013

  15. Insecticide resistance Action Committee. http://emethods.irac-online.org/. Accessed 04 October 2013

  16. Lodesani M, Colombo M, Spreafico M (1995) Ineffectiveness of Apistan treatment against the mite Varroa jacobsoni Oud. in several districts of Lombardy (Italy). Apidologie 26:67–72

    Article  Google Scholar 

  17. Astuti M, Spreafico M, Colombo M (1995) Indagine sull’efficacia degli interventi di controllo di Varroa jacobsoni attuati nel 1993 in Lombardia. Presented at the meeting Apilombardia, Minoprio (Como), 8–9 October 1994. La selezione veterinaria 11:935–944

    Google Scholar 

  18. Faucon JP, Drajnudel P, Fléché C (1995) Mise en évidence d’une diminution de l’efficacité de l’Apistan utilisé contre la varroose de l’abeille (Apis mellifera). Apidologie 26:291–296

    Article  CAS  Google Scholar 

  19. Fluri P (1995) Tessin: efficacité de l’Apistan et du Bayvarol en régression. J Suisse Apic 6:198–199

    Google Scholar 

  20. Trouiller J (1998) Monitoring Varroa jacobsoni resistance to pyrethroids in western Europe. Apidologie 29:537–546

    Article  Google Scholar 

  21. Korpela S, (1999) Varroapunkin resistenssiä Apistanille Suomessa-haastemehiläishoitajille, neuvonnalle ja tutkimukselle [Resistance towards Apistan in varroa mites detected in Finland-a challenge for beekeepers, extensions and research]. Mehiläinen 16:42–46

    Google Scholar 

  22. Thompson M, Brown MA, Ball RF, Bew MH (2002) First report of Varroa destructor resistance to pyrethroids in the UK. Apidologie 33:357–366

    Article  CAS  Google Scholar 

  23. Fernandez NA, Garcia O (1998) Fluvalinato, Disminución de la eficacia en el control de la varroatosis en Argentina. Vida Apic 91:17–27

    Google Scholar 

  24. Baxter J, Eischen F, Pettis J et al (1998) Detection of fluvalinate resistant varroa mites in US honey bees. Am Bee J 138:291

    Google Scholar 

  25. Hillesheim E, Ritter W, Bassand D (1996) First data on resistance mechanisms of Varroa jacobsoni (OUD.) against tau-fluvalinate. Exp Appl Acarol 20(5):283–296

    Article  CAS  Google Scholar 

  26. Mozes-Koch R, Slabezki Y, Efrat H et al (2000) First detection in Israel of fluvalinate resistance in the varroa mite using bioassay and biochemical methods. Exp Appl Acarol 24(1):35–43

    Article  CAS  Google Scholar 

  27. Milani N, Della Vedova G (2002) Decline in the proportion of mites resistant to fluvalinate in a population of Varroa destructor not treated with pyrethroids. Apidologie 33:417–422

    Article  CAS  Google Scholar 

  28. Milani N (1995) The resistance of Varroa jacobsoni Oud. to pyrethroids: a laboratory assay. Apidologie 26(5):415–429

    Article  CAS  Google Scholar 

  29. Lodesani M, Milani N, Della Vedova G et al (2004) Monitoraggio della resistenza al fluvalinate e al cumafos in Varroa destructor in Italia. Apoidea 1:60–65

    Google Scholar 

  30. Costa C, Lodesani M, Serra G, Colombo R (2006) Monitoraggio di residui di acaricidi in cera italiana. Apoidea 3:10–17

    Google Scholar 

  31. Milani N, Della Vedova G, Lodesani M (2009) Determination of the LC50 of chlorfenvinphos in Varroa destructor. J Apicult Res Bee Wld 48(2):140–141

    Article  CAS  Google Scholar 

  32. Milani N, Della Vedova G (1996) Determination of the LC50 in the mite Varroa jacobsoni of the active substances in Perizin® and Cekafix®. Apidologie 27:67–72

    Article  Google Scholar 

  33. Sakofski F, Koeniger N, Fuchs S (1990) Seasonality of honey bee colony invasion by Varroa jacobsoni Oud. Apidologie 21:547–550

    Article  Google Scholar 

  34. Greatti M, Milani N, Nazzi F (1992) Reinfestation of an acaricide-treated apiary by Varroa jacobsoni. Exp Appl Acarol 16:279–286

    Article  Google Scholar 

  35. Bogdanov S (2005) Contaminants of bee products. Apidologie 37:1–18

    Article  Google Scholar 

  36. Lodesani M, Carpana E, Bassini A et al (1994) Ricerca dei residui di ossitetraciclina in alveari trattati secondo due diversi metodi di somministrazione. Apicoltura 9:51–66

    Google Scholar 

  37. Sabatini AG, Carpana E, Serra G, Colombo R (2002) Presence of acaricides and antibiotics in samples of Italian honey. Apiacta 38:46–49

    Google Scholar 

  38. Wienands A (1987) 87 gegen Varroa. Stand Februar 1987.Allg Dtsch Imkerztg 21:127–130

    Google Scholar 

  39. Wallner K (1999) Varroacides and their residues in bee products. Apidologie 30:235–248

    Article  CAS  Google Scholar 

  40. Muino MA, Sancho MT, Simal Gandara J et al (1997) Acaricide residues in honeys from Galicia (NW Spain). J Food Prot 60:78–80

    CAS  Google Scholar 

  41. Bogdanov S, Kilchenmann V, Imdorf A (1998) Acaricide residues in some bee products. J Apic Res 37:57–67

    CAS  Google Scholar 

  42. Bogdanov S (1988) Bestimmung von Amitraz und seine Metaboliten in Honig durch HPLC. Mitt Schweiz Zentrum Bienenforsch, pp 1–9

    Google Scholar 

  43. Korta E, Bakkali A, Berrueta LA et al (2001) Characterization and monitoring of acaricide degradation products in honey and beeswax. J Agric Food Chem 49:5835–5842

    Article  CAS  PubMed  Google Scholar 

  44. Korta E, Bakkali A, Berrueta LA et al (2002) Determination of amitraz and of other acaricide residues in beeswax. Anal Chim Acta 475:97–103

    Article  Google Scholar 

  45. Fries I, Wallner K, Rosenkranz P (1998) Effects on Varroa jacobsoni from acaricides in beeswax. J Apicult Res 37(2):85–90

    CAS  Google Scholar 

  46. Johnson RM, Dahlgren L, Siegfried BD, Ellis MD (2013) Acaricide, fungicide and drug interactions in honey bees (Apis mellifera). PLoS One 8:e54092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Cox-Foster DL, Conlan S, Holmes EC et al (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318:283–287

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Lodesani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Lodesani, M., Floris, I. (2014). Problemi legati ai trattamenti farmacologici. In: Carpana, E., Lodesani, M. (eds) Patologia e avversità dell’alveare. Springer, Milano. https://doi.org/10.1007/978-88-470-5650-3_12

Download citation

Publish with us

Policies and ethics