Skip to main content

Amplitude Spectrum Area to Predict the Success of Defibrillation

  • Chapter
  • First Online:
Resuscitation

Abstract

In victims of cardiac arrest due to ventricular fibrillation (VF) or pulseless ventricular tachycardia (VT), cardiopulmonary resuscitation (CPR) in conjunction with electrical defibrillation (DF) has the potential of re-establishing the return of spontaneous circulation (ROSC). During cardiac arrest, coronary blood flow ceases, accounting for a progressive and severe energy imbalance. Intra-myocardial hypercarbic acidosis is associated with depletion of high energy phosphates and correspondingly severe global myocardial ischemia [1, 2]. The ischemic left ventricle becomes contracted ushering in the stone heart [3, 4]. After onset of contracture, the probability of successful DF is remote. Early CPR, accounting for a partial restoration of coronary perfusion pressure (CPP) and myocardial blood flow, delays onset of ischemic myocardial injury and facilitates defibrillation [5]. Accordingly, VF is characterized by three time-sensitive electrophysiological phases: The electrical phase of 0–4 min; the circulatory phase of 4–10 min; and the metabolic phase of >10 min. During the electrical phase, immediate DF is likely to be successful. As ischemia progresses, the success of attempted DF diminishes without CPR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson BA, Weil MH, Tang W et al (1995) Mechanisms of myocardial hypercarbic acidosis during cardiac arrest. J Appl Physiol 78:1579–1584

    PubMed  CAS  Google Scholar 

  2. Kern KB, Garewal HS, Sanders AB et al (1990) Depletion of myocardial adenosine triphosphate during prolonged untreated ventricular fibrillation: effect on defibrillation success. Resuscitation 20:221–229

    Article  PubMed  CAS  Google Scholar 

  3. Steen S, Liao Q, Pierre L et al (2003) The critical importance of minimal delay between chest compressions and subsequent defibrillation: a haemodynamic explanation. Resuscitation 58:249–258

    Article  PubMed  Google Scholar 

  4. Klouche K, Weil MH, Sun S et al (2002) Evolution of the Stone Heart After Prolonged Cardiac Arrest. Chest 122:1006–1011

    Article  PubMed  Google Scholar 

  5. Deshmukh HG, Weil MH, Gudipati CV et al (1989) Mechanism of blood flow generated by precordial compression during CPR, I: studies on closed chest precordial compression. Chest 95:1092–1099

    Article  PubMed  CAS  Google Scholar 

  6. Chen PS, Wu TJ, Ting CT et al (2003) A tale of two fibrillations. Circulation 108:2298–2303

    Article  PubMed  Google Scholar 

  7. Abella BS, Alvarado JP, Myklebust H et al (2005) Quality of cardiopulmonary resuscitation during in-hospital cardiac arrest. JAMA 293:305–310

    Article  PubMed  CAS  Google Scholar 

  8. Wik L, Kramer-Johansen J, Myklebust H et al (2005) Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest. JAMA 293:299–304

    Article  PubMed  CAS  Google Scholar 

  9. Eftestol T, Sunde K, Steen PA (2002) Effects of interrupting compressions on the calculated probability of defibrillation success during out-of-hospital cardiac arrest. Circulation 105:2270–2273

    Article  PubMed  Google Scholar 

  10. Snyder D, Morgan C (2004) Wide variation in cardiopulmonary resuscitation interruption intervals among commercially available automated external defibrillators may affect survival despite high defibrillation efficacy. Crit Care Med 32:S421–S424

    Article  PubMed  Google Scholar 

  11. Steen S, Liao Q, Pierre L et al (2003) The critical importance of minimal delay between chest compressions and subsequent defibrillation: a haemodynamic explanation. Resuscitation 58:249–258

    Article  PubMed  Google Scholar 

  12. Yu T, Weil MH, Tang W et al (2002) Adverse outcome of interrupted precordial compression during automated defibrillation. Circulation 106:368–372

    Article  PubMed  Google Scholar 

  13. Osswald S, Trouton TG, O’Nunain SS et al (1994) Relation between shock-related myocardial injury and defibrillation efficacy of monophasic and biphasic shocks in a canine model. Circulation 90:2501–2509

    Article  PubMed  CAS  Google Scholar 

  14. Weaver MD, Cobb LA, Dennis D et al (1985) Amplitude of ventricular fibrillation waveform and outcome after cardiac arrest. Ann Intern Med 102:53–55

    Article  PubMed  CAS  Google Scholar 

  15. Brown CG, Griffith RF, Van Ligten P et al (2004) Median frequency: a new parameter for predicting defibrillation success rate. Ann Emerg Med 20:787–789

    Article  Google Scholar 

  16. Watson JN, Uchaipichat N, Addison P et al (2004) Improved prediction of defibrillation success for out-of-hospital VF cardiac arrest using wavelet transform methods. Resuscitation 63:269–275

    Article  PubMed  Google Scholar 

  17. Callaway CW, Sherman LD, Mosesso VN Jr et al (2001) Scaling exponent predicts defibrillation success for out-of-hospital ventricular fibrillation cardiac arrest. Circulation 103:1656–1661

    Article  PubMed  CAS  Google Scholar 

  18. Eftestol T, Sunde K, Aase SO et al (2000) Predicting outcome of defibrillation by spectral characterization and nonparametric classification of ventricular fibrillation in patients with out-of-hospital cardiac arrest. Circulation 102:1523–1529

    Article  PubMed  CAS  Google Scholar 

  19. Callaway CW, Menegazzi JJ (2005) Waveform analysis of ventricular fibrillation to predict defibrillation. Curr Opin Crit Care 11:192–199

    Article  PubMed  Google Scholar 

  20. Povoas H, Weil MH, Tang W et al (2002) Predicting the success of defibrillation by electrocardiographic analysis. Resuscitation 53:77–82

    Article  PubMed  Google Scholar 

  21. Pernat AM, Weil MH, Tang W et al (2001) Optimizing timing of ventricular defibrillation. Crit Care Med 29:2360–2365

    Article  PubMed  Google Scholar 

  22. Young C, Bisera J, Gehman S et al (2004) Amplitude spectrum area: measuring the probability of successful defibrillation as applied to human data. Crit Care Med 32:S356–S358

    Article  PubMed  Google Scholar 

  23. Ristagno G, Gullo A, Berlot G et al (2008) Prediction of successful defibrillation in human victims of out-of-hospital cardiac arrest: a retrospective electrocardiographic analysis. Anaesth Intensive Care 36:46–50

    PubMed  CAS  Google Scholar 

  24. Li Y, Ristagno G, Bisera J et al (2008) Electrocardiogram waveforms for monitoring effectiveness of chest compression during cardiopulmonary resuscitation. Crit Care Med 36:211–215

    Article  PubMed  Google Scholar 

  25. Sun S, Weng Y, Wu X et al (2011) Optimizing the duration of CPR prior to defibrillation improves the outcome of CPR in a rat model of prolonged cardiac arrest. Resuscitation 82:S3–S7

    Article  PubMed  Google Scholar 

  26. Ristagno G, Tan Q, Quan W, et al. (2010) AMSA-based shock decision: a human retrospective analyses during pre-hospital CPR intervention. Circulation 122:A20547 (Abstract)

    Google Scholar 

  27. Ristagno G, Quan W, Freeman G. (2012) Amplitude spectrum area to predict defibrillation outcome after recurrent and defibrillation resistant ventricular fibrillation during pre-hospital cardiopulmonary resuscitation. Resuscitation 83:e11–e12 (Abstract)

    Google Scholar 

  28. Ristagno G, Fornari C, Li Y, et al. (2012) Amplitude spectrum area-based defibrillation decision during prehospital cardiopulmonary resuscitation in lombardia, Italy. Circulation 126:A143 (Abstract)

    Google Scholar 

  29. Paradis NA, Martin GB, Rivers EP et al (1990) Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA 263:1106–1113

    Article  PubMed  CAS  Google Scholar 

  30. Grmec S, Klemen P (2001) Does the end-tidal carbon dioxide (EtCO2) concentration have prognostic value during out-ofhospital cardiac arrest? Eur J Emerg Med 8:263–269

    Article  PubMed  CAS  Google Scholar 

  31. Hostler D, Everson-Stewart S, Rea TD et al (2011) Effect of real-time feedback during cardiopulmonary resuscitation outside hospital: prospective, cluster-randomised trial. BMJ 342:d512

    Article  PubMed  Google Scholar 

  32. Perkins GD, Kocierz L, Smith SC et al (2009) Compression feedback devices over estimate chest compression depth when performed on a bed. Resuscitation 80:79–82

    Article  PubMed  Google Scholar 

  33. Nishisaki A, Nysaether J, Sutton R et al (2009) Effect of mattress deflection on CPR quality assessment for older children and adolescents. Resuscitation 80:540–545

    Article  PubMed  Google Scholar 

  34. ECC Committees, Subcommittees, and Task Forces of the American Heart Association. (2005) 2005 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care: part 4. Adult basic life support. Circulation 112:IV-19 –IV-34

    Google Scholar 

  35. Berg RA, Hemphill R, Abella BS et al (2010) Part 5: adult basic life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 122:S685–S705

    Article  PubMed  Google Scholar 

  36. Berg RA, Sanders AB, Kern KB et al (2001) Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest. Circulation 104:2465–2470

    Article  PubMed  CAS  Google Scholar 

  37. Krarup NH, Terkelsen CJ, Johnsen SP et al (2011) Quality of cardiopulmonary resuscitation in out-of-hospital cardiac arrest is hampered by interruptions in chest compressions–a nationwide prospective feasibility study. Resuscitation 82:263–269

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Ristagno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Ristagno, G., Fumagalli, F. (2014). Amplitude Spectrum Area to Predict the Success of Defibrillation. In: Gullo, A., Ristagno, G. (eds) Resuscitation. Springer, Milano. https://doi.org/10.1007/978-88-470-5507-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5507-0_6

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5506-3

  • Online ISBN: 978-88-470-5507-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics