Skip to main content

Pharmacological Induction of Hypothermia

  • Chapter
  • First Online:
Resuscitation
  • 2155 Accesses

Abstract

Mild to moderate hypothermia exerted extraordinary protection against traumatic ischemic-hypoxic brain injury and consequently produced long-term beneficial clinic effects. Currently, the routine methods for inducing hypothermia mainly rely on physical strategies. Those shortcomings of the physical hypothermia limited the widely use of this life-saving intervention and also negated the beneficial effects of hypothermia. Recently, pharmacological method has emerged as a novel option for induction of hypothermia as to its easy implementation. There have been a series of drugs reported to induce hypothermia, such as the cannabinoids, opioid receptor agonists, transient receptor potential vanilloid, neurotensins, thyroxine derivatives, dopamine receptor agonists, cholecystokinin. It would provide broad clinical implications and insights understanding the interactions between neuroprotection and pharmacological hypothermia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR, Rice KC (1990) Cannabinoid receptor localization in brain. Proc Natl Acad Sci USA 87:1932–1936

    Google Scholar 

  2. Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583 (the official journal of the Society for Neuroscience)

    Google Scholar 

  3. Tsou K, Brown S, Sanudo-Pena MC, Mackie K, Walker JM (1998) Immunohistochemical distribution of cannabinoid cb1 receptors in the rat central nervous system. Neuroscience 83:393–411

    Article  PubMed  CAS  Google Scholar 

  4. Piomelli D (2003) The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 4:873–884

    Article  PubMed  CAS  Google Scholar 

  5. Mackie K (2006) Cannabinoid receptors as therapeutic targets. Annu Rev Pharmacol Toxicol 46:101–122

    Article  PubMed  CAS  Google Scholar 

  6. Di Marzo V (2008) Targeting the endocannabinoid system: to enhance or reduce? Nat Rev Drug Discov 7:438–455

    Article  PubMed  Google Scholar 

  7. Jin KL, Mao XO, Goldsmith PC, Greenberg DA (2000) Cb1 cannabinoid receptor induction in experimental stroke. Ann Neurol 48:257–261

    Article  PubMed  CAS  Google Scholar 

  8. Sinor AD, Irvin SM, Greenberg DA (2000) Endocannabinoids protect cerebral cortical neurons from in vitro ischemia in rats. Neurosci Lett 278:157–160

    Article  PubMed  CAS  Google Scholar 

  9. Nagayama T, Sinor AD, Simon RP, Chen J, Graham SH, Jin K, Greenberg DA (1999) Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J Neurosci 19:2987–2995

    PubMed  CAS  Google Scholar 

  10. Braida D, Pozzi M, Sala M (2000) Cp 55,940 protects against ischemia-induced electroencephalographic flattening and hyperlocomotion in mongolian gerbils. Neurosci Lett 296:69–72

    Article  PubMed  CAS  Google Scholar 

  11. Viscomi MT, Oddi S, Latini L, Bisicchia E, Maccarrone M, Molinari M (2010) The endocannabinoid system: a new entry in remote cell death mechanisms. Exp Neurol 224:56–65

    Article  PubMed  CAS  Google Scholar 

  12. Rawls SM, Cabassa J, Geller EB, Adler MW (2002) Cb1 receptors in the preoptic anterior hypothalamus regulate win 55212–2 [(4,5-dihydro-2-methyl-4(4-morpholinylmethyl)-1-(1-naphthalenyl-carbonyl)- 6h-pyrrolo[3,2,1ij]quinolin-6-one]-induced hypothermia. J Pharmacol Exp Ther 301:963–968

    Article  PubMed  CAS  Google Scholar 

  13. Rawls SM, Tallarida RJ, Kon DA, Geller EB, Adler MW (2004) Gabaa receptors modulate cannabinoid-evoked hypothermia. Pharmacol Biochem Behav 78:83–91

    Article  PubMed  CAS  Google Scholar 

  14. Gonzalez B, Paz F, Floran L, Aceves J, Erlij D, Floran B (2009) Cannabinoid agonists stimulate [3h]gaba release in the globus pallidus of the rat when g(i) protein-receptor coupling is restricted: Role of dopamine d2 receptors. J Pharmacol Exp Ther 328:822–828

    Article  PubMed  CAS  Google Scholar 

  15. Sulcova E, Mechoulam R, Fride E (1998) Biphasic effects of anandamide. Pharmacol Biochem Behav 59:347–352

    Article  PubMed  CAS  Google Scholar 

  16. Fernandez-Lopez D, Faustino J, Derugin N, Wendland M, Lizasoain I, Moro MA, Vexler ZS (2012) Reduced infarct size and accumulation of microglia in rats treated with win 55,212–2 after neonatal stroke. Neuroscience 207:307–315

    Article  PubMed  CAS  Google Scholar 

  17. Alonso-Alconada D, Alvarez A, Alvarez FJ, Martinez-Orgado JA, Hilario E (2012) The cannabinoid win 55212–2 mitigates apoptosis and mitochondrial dysfunction after hypoxia ischemia. Neurochem Res 37:161–170

    Article  PubMed  CAS  Google Scholar 

  18. Alonso-Alconada D, Alvarez FJ, Alvarez A, Mielgo VE, Goni-de-Cerio F, Rey-Santano MC, Caballero A, Martinez-Orgado J, Hilario E (2010) The cannabinoid receptor agonist win 55,212–2 reduces the initial cerebral damage after hypoxic-ischemic injury in fetal lambs. Brain Res 1362:150–159

    Article  PubMed  CAS  Google Scholar 

  19. Hu B, Wang Q, Chen Y, Du J, Zhu X, Lu Y, Xiong L, Chen S (2010) Neuroprotective effect of win 55,212–2 pretreatment against focal cerebral ischemia through activation of extracellular signal-regulated kinases in rats. Eur J Pharmacol 645:102–107

    Article  PubMed  CAS  Google Scholar 

  20. Fernandez-Lopez D, Martinez-Orgado J, Nunez E, Romero J, Lorenzo P, Moro MA, Lizasoain I (2006) Characterization of the neuroprotective effect of the cannabinoid agonist win-55212 in an in vitro model of hypoxic-ischemic brain damage in newborn rats. Pediatr Res 60:169–173

    Article  PubMed  CAS  Google Scholar 

  21. Martinez-Orgado J, Fernandez-Frutos B, Gonzalez R, Romero E, Uriguen L, Romero J, Viveros MP (2003) Neuroprotection by the cannabinoid agonist win-55212 in an in vivo newborn rat model of acute severe asphyxia. Brain Res Mol Brain Res 114:132–139

    Article  PubMed  CAS  Google Scholar 

  22. Clark WG, Cumby HR (1978) Hyperthermic responses to central and peripheral injections of morphine sulphate in the cat. Br J Pharmacol 63:65–71

    Article  PubMed  CAS  Google Scholar 

  23. Geller EB, Hawk C, Keinath SH, Tallarida RJ, Adler MW (1983) Subclasses of opioids based on body temperature change in rats: Acute subcutaneous administration. J Pharmacol Exp Ther 225:391–398

    PubMed  CAS  Google Scholar 

  24. Rosow CE, Miller JM, Poulsen-Burke J, Cochin J (1982) Opiates and thermoregulation in mice. Ii. Effects of opiate antagonists. J Pharmacol Exp Ther 220:464–467

    PubMed  CAS  Google Scholar 

  25. Hayes AG, Skingle M, Tyers MB (1985) Effect of beta-funaltrexamine on opioid side-effects produced by morphine and u-50, 488h. J Pharm Pharmacol 37:841–843

    Article  PubMed  CAS  Google Scholar 

  26. Geller EB, Rowan CH, Adler MW (1986) Body temperature effects of opioids in rats: intracerebroventricular administration. Pharmacol Biochem Behav 24:1761–1765

    Article  PubMed  CAS  Google Scholar 

  27. Maldonado R, Dauge V, Callebert J, Villette JM, Fournie-Zaluski MC, Feger J, Roques BP (1989) Comparison of selective and complete inhibitors of enkephalin-degrading enzymes on morphine withdrawal syndrome. Eur J Pharmacol 165:199–207

    Article  PubMed  CAS  Google Scholar 

  28. Lin MT, Uang WN, Chan HK (1984) Hypothalamic neuronal responses to iontophoretic application of morphine in rats. Neuropharmacology 23:591–594

    Article  PubMed  CAS  Google Scholar 

  29. Kusumoto K, Mackay KB, McCulloch J (1992) The effect of the kappa-opioid receptor agonist ci-977 in a rat model of focal cerebral ischaemia. Brain Res 576:147–151

    Article  PubMed  CAS  Google Scholar 

  30. Silvia RC, Slizgi GR, Ludens JH, Tang AH (1987) Protection from ischemia-induced cerebral edema in the rat by u-50488h, a kappa opioid receptor agonist. Brain Res 403:52–57

    Article  PubMed  CAS  Google Scholar 

  31. Yang L, Wang H, Shah K, Karamyan VT, Abbruscato TJ (2011) Opioid receptor agonists reduce brain edema in stroke. Brain Res 1383:307–316

    Article  PubMed  CAS  Google Scholar 

  32. Gueniau C, Oberlander C (1997) The kappa opioid agonist niravoline decreases brain edema in the mouse middle cerebral artery occlusion model of stroke. J Pharmacol Exp Ther 282:1–6

    PubMed  CAS  Google Scholar 

  33. Goyagi T, Toung TJ, Kirsch JR, Traystman RJ, Koehler RC, Hurn PD, Bhardwaj A (2003) Neuroprotective kappa-opioid receptor agonist brl 52537 attenuates ischemia-evoked nitric oxide production in vivo in rats. Stroke 34:1533–1538 (a journal of cerebral circulation)

    Google Scholar 

  34. Furui T (1993) Potential protection by a specific kappa-opiate agonist u-50488h against membrane failure in acute ischemic brain. Neurol Med Chir 33:133–138

    Article  CAS  Google Scholar 

  35. Charron C, Messier C, Plamondon H (2008) Neuroprotection and functional recovery conferred by administration of kappa- and delta 1-opioid agonists in a rat model of global ischemia. Physiol Behav 93:502–511

    Article  PubMed  CAS  Google Scholar 

  36. Zhang Z, Chen TY, Kirsch JR, Toung TJ, Traystman RJ, Koehler RC, Hurn PD, Bhardwaj A (2003) Kappa-opioid receptor selectivity for ischemic neuroprotection with brl 52537 in rats. Anesth Analg 97:1776–1783

    Article  PubMed  CAS  Google Scholar 

  37. Mackay KB, Kusumoto K, Graham DI, McCulloch J (1993) Focal cerebral ischemia in the cat: pretreatment with a kappa-1 opioid receptor agonist, ci-977. Brain Res 618:213–219

    Article  PubMed  CAS  Google Scholar 

  38. Zadina JE, Banks WA, Kastin AJ (1986) Central nervous system effects of peptides, 1980–1985: a cross-listing of peptides and their central actions from the first six years of the journal peptides. Peptides 7:497–537

    Article  PubMed  CAS  Google Scholar 

  39. Kapas L, Benedek G, Penke B (1989) Cholecystokinin interferes with the thermoregulatory effect of exogenous and endogenous opioids. Neuropeptides 14:85–92

    Article  PubMed  CAS  Google Scholar 

  40. Kapas L, Obal F Jr, Alfoldi P, Rubicsek G, Penke B, Obal F (1988) Effects of nocturnal intraperitoneal administration of cholecystokinin in rats: simultaneous increase in sleep, increase in eeg slow-wave activity, reduction of motor activity, suppression of eating, and decrease in brain temperature. Brain Res 438:155–164

    Article  PubMed  CAS  Google Scholar 

  41. Palkovits M, Kiss JZ, Beinfeld MC, Williams TH (1982) Cholecystokinin in the nucleus of the solitary tract of the rat: evidence for its vagal origin. Brain Res 252:386–390

    Article  PubMed  CAS  Google Scholar 

  42. Szelenyi Z, Bartho L, Szekely M, Romanovsky AA (1994) Cholecystokinin octapeptide (cck-8) injected into a cerebral ventricle induces a fever-like thermoregulatory response mediated by type b cck-receptors in the rat. Brain Res 638:69–77

    Article  PubMed  CAS  Google Scholar 

  43. Rezayat M, Ravandeh N, Zarrindast MR (1999) Cholecystokinin and morphine-induced hypothermia. Eur Neuropsychopharmacol 9:219–225 (the journal of the European College of Neuropsychopharmacology)

    Google Scholar 

  44. Pullen RG, Hodgson OJ (1987) Penetration of diazepam and the non-peptide cck antagonist, l-364,718, into rat brain. J Pharm Pharmacol 39:863–864

    Article  PubMed  CAS  Google Scholar 

  45. Woltman TA, Hulce M, Reidelberger RD (1999) Relative blood-brain barrier permeabilities of the cholecystokinin receptor antagonists devazepide and a-65186 in rats. J Pharm Pharmacol 51:917–920

    Article  PubMed  CAS  Google Scholar 

  46. Yasui M, Kawasaki K (1995) 1-cckb receptor activation protects ca1 neurons from ischemia-induced dysfunction in stroke-prone spontaneously hypertensive rats hippocampal slices. Neurosci Lett 191:99–102

    Article  PubMed  CAS  Google Scholar 

  47. Weng Y, Sun S, Song F Phil Chung S, Park J, Harry Weil M, Tang W (2011) Cholecystokinin octapeptide induces hypothermia and improves outcomes in a rat model of cardiopulmonary resuscitation. Crit Care Med 39:2407–2412

    Google Scholar 

  48. Jancso-Gabor A, Szolcsanyi J, Jancso N (1970) Stimulation and desensitization of the hypothalamic heat-sensitive structures by capsaicin in rats. J Physiol 208:449–459

    PubMed  CAS  Google Scholar 

  49. Uhl GR (1982) Distribution of neurotensin and its receptor in the central nervous system. Ann N Y Acad Sci 400:132–149

    Article  PubMed  CAS  Google Scholar 

  50. Kalivas PW, Jennes L, Nemeroff CB, Prange AJ Jr (1982) Neurotensin: topographical distribution of brain sites involved in hypothermia and antinociception. J Comp Neurol 210:225–238

    Article  PubMed  CAS  Google Scholar 

  51. Martin GE, Bacino CB, Papp NL (1980) Hypothermia elicited by the intracerebral microinjection of neurotensin. Peptides 1:333–339

    Article  PubMed  CAS  Google Scholar 

  52. Torup L, Borsdal J, Sager T (2003) Neuroprotective effect of the neurotensin analogue jmv-449 in a mouse model of permanent middle cerebral ischaemia. Neurosci Lett 351:173–176

    Article  PubMed  CAS  Google Scholar 

  53. Choi KE, Hall CL, Sun JM, Wei L, Mohamad O, Dix TA, Yu SP (2012) 1-a novel stroke therapy of pharmacologically induced hypothermia after focal cerebral ischemia in mice. FASEB J 26(7):2799–2810 (official publication of the Federation of American Societies for Experimental Biology)

    Google Scholar 

  54. Babcock AM, Baker DA, Hallock NL, Lovec R, Lynch WC, Peccia JC (1993) Neurotensin-induced hypothermia prevents hippocampal neuronal damage and increased locomotor activity in ischemic gerbils. Brain Res Bull 32:373–378

    Article  PubMed  CAS  Google Scholar 

  55. Doyle KP, Suchland KL, Ciesielski TM, Lessov NS, Grandy DK, Scanlan TS, Stenzel-Poore MP (2007) Novel thyroxine derivatives, thyronamine and 3-iodothyronamine, induce transient hypothermia and marked neuroprotection against stroke injury. Stroke 38:2569–2576 (a journal of cerebral circulation)

    Google Scholar 

  56. Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277:93–96

    Article  PubMed  CAS  Google Scholar 

  57. Nunes JL, Sharif NA, Michel AD, Whiting RL (1991) Dopamine d2-receptors mediate hypothermia in mice: Icv and ip effects of agonists and antagonists. Neurochem Res 16:1167–1174

    Article  PubMed  CAS  Google Scholar 

  58. Salmi P, Ahlenius S (1997) Dihydrexidine produces hypothermia in rats via activation of dopamine d1 receptors. Neurosci Lett 236:57–59

    Article  PubMed  CAS  Google Scholar 

  59. Perachon S, Betancur C, Pilon C, Rostene W, Schwartz JC, Sokoloff P (2000) Role of dopamine d3 receptors in thermoregulation: a reappraisal. Neuroreport 11:221–225

    Article  PubMed  CAS  Google Scholar 

  60. Morley JE, Levine AS, Lindblad S (1981) Intraventricular cholecystokinin-octapeptide produces hypothermia in rats. Eur J Pharmacol 74:249–251

    Article  PubMed  CAS  Google Scholar 

  61. Clark WG, Lipton JM (1985) Changes in body temperature after administration of amino acids, peptides, dopamine, neuroleptics and related agents: Ii. Neurosci Biobehav Rev 9:299–371

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanchun Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Weng, Y., Sun, S., Tang, W. (2014). Pharmacological Induction of Hypothermia. In: Gullo, A., Ristagno, G. (eds) Resuscitation. Springer, Milano. https://doi.org/10.1007/978-88-470-5507-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5507-0_15

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5506-3

  • Online ISBN: 978-88-470-5507-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics