Skip to main content

Biomechanics and Prosthetic Osseointegration

  • Chapter
Imaging of Prosthetic Joints
  • 1333 Accesses

Abstract

Arthroplasty is a surgical procedure oriented to provide pain-free motion to a joint maintaining stability and restore function to the periarticular soft tissues and muscles that control it. The modern total joint replacement is defined by pioneering work of Sir John Charnley; referring to his “low-friction” arthroplasty concepts, similar total joint designs were developed for most of the other major joints including the knee, ankle, shoulder, and elbow. The authors provide basic knowledge of the functional anatomy of the major joints and general biomechanics of articular prostheses, which is required to orthopedic surgeon in order to perform properly replacement and select implants. The material properties and fixation methods of joint implants is paramount to prostheses performances and their survivorship. The new developments in bearing surfaces and coating materials represent the attempt to bring joint prostheses to the next level and get a further increase as in performance as well in longevity by decreasing the wear degradation and osseointegration problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergmann G, Graichen F, Rohlmann A, Bender A, Heinlein B, Duda GN, Heller MO, Morlock MM (2010) Realistic loads for testing hip implants. Biomed Mater Eng 20:65–75

    Google Scholar 

  2. Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34:859–871

    Article  CAS  PubMed  Google Scholar 

  3. Calderale PM, Bignardi C (1995) Biomeccanica dell’articolazione dell’anca. In: Pipino F, Quagliarella L (eds) Biomeccanica Ortopedica e Traumatologica. UTET, Turin, pp 193–207

    Google Scholar 

  4. Fabbriciani C, Delcogliano A, Del Torto M, Schiavone Panni A (1995) Biomeccanica dell’articolazione del ginocchio. In: Pipino F, Quagliarella L (eds) Biomeccanica Ortopedica e Traumatologica. UTET, Turin, pp 208–218

    Google Scholar 

  5. Ansari S, Ackroyd CE, Newman JH (1998) Kinematic posterior cruciate ligament-retaining total knee replacements: a 10-year survivorship study of 445 arthroplasties. Am J Knee Surg 11:9

    CAS  PubMed  Google Scholar 

  6. Hungerford MW, Manson TT, Bennett EL, Khanuja HS, Jacobs MA (2009) Sagittal plane balancing in total knee arthroplasty. J Surg Orthop Adv Summer 18(2):83–92

    Google Scholar 

  7. Insall S (2011) Surgery of the knee, 3rd edn. Churchill Livingstone

    Google Scholar 

  8. Brockett C, Williams S, Zhongmin J (1996) Friction of total hip replacements with different bearings and loading conditions. J Biomed Mater Res B Appl Biomater 8IB(2):508–515

    Google Scholar 

  9. Walker PS, Gold BL (1971) The tribology (friction, lubrication and wear) of artificial hip joints. Wear 17:285–299

    Article  Google Scholar 

  10. Sariali E, Stewart T, Jin Z, Fisher J (2010) In vitro investigation of friction under edge-loading conditions for ceramic-on-ceramic total hip prosthesis. J Orthop Res 28:979–985

    PubMed  Google Scholar 

  11. Lundberga JH (2006) Problematic sites of third body embedment in polyethylene for total hip wear acceleration. J Biomech 39:1208–1212

    Article  Google Scholar 

  12. Harris WH (2001) Wear and periprosthetic osteolysis: the problem. Clin Orthop Relat Res 393:66–70

    Article  PubMed  Google Scholar 

  13. Archibeck MJ (2000) The basic science of periprosthetic osteolysis. J Bone Joint Surg Am 82:1478–1489

    Google Scholar 

  14. Geerdink CH (2009) Cross-linked compared with historical polyethylene in THA an 8-year clinical study. Clin Orthop Relat Res 476:979–984

    Article  Google Scholar 

  15. Digas G et al (2003) Increase in early polyethylene wear after sterilization with ethylene oxide: radiostereometric analyses of 201 total hips. Acta Orthop Scand 74:531–541

    Article  PubMed  Google Scholar 

  16. Dumbleton JH et al (2006) The basis for a second-generation highly cross-linked UHMWPE. Clin Orthop 453:265–271

    Article  PubMed  Google Scholar 

  17. Muratoglu OK et al (2001) A novel method of cross-linking ultra–high-molecular-weight polyethylene to improve wear, reduce oxidation, and retain mechanical properties. J Arthroplasty 16:149

    Article  CAS  PubMed  Google Scholar 

  18. Dowson D, Jin ZM (2006) Metal-on-metal hip joint tribology. Proc Inst Mech Eng 220:107–118

    Article  CAS  Google Scholar 

  19. Engh CA et al (2009) Metal Ion levels after metal-on-metal total hip arthroplasty: a randomized trial. Clin Orthop Relat Res 467:101–111

    Google Scholar 

  20. Hallab N et al (2001) Metal sensitivity in patients with orthopaedic implants. J Bone Joint Surg Am 83:428–36

    Google Scholar 

  21. Jacobs JJ et al (1998) Metal release in patients who have had a primary total hip arthroplasty. A prospective, controlled, longitudinal study. J Bone Joint Surg Am 80:1447–1458

    Google Scholar 

  22. Hannouche D et al (2005) Ceramics in total hip replacement. Clin Orthop Relat Res 430:62–71

    Article  PubMed  Google Scholar 

  23. Hannouche D et al (2003) Fractures of ceramic bearings: history and present status. Clin Orthop Relat Res 417:19–26

    Google Scholar 

  24. Engh CA, Bobyn JD, Glassman AH (1987) Porous coated hip replacement: the factors governing bone ingrowth, stress shielding, and clinical results. J Bone Joint Surg 69:45

    CAS  Google Scholar 

  25. Huiskes R, Weinans H, Van Rietbergenm B (1992) The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res 274:124–134

    PubMed  Google Scholar 

  26. Breusch SJ, Malchau H (2005) The well-cemented total hip arthroplasty: theory and practice. Springer-Berlin, Heidelberg

    Google Scholar 

  27. Fottner A, Utzschneider S, Mazoochian F, Von Schulze PC, Jansson V (2010) Cementing techniques in hip arthroplasty: an overview. Z Orthop Unfall 148:168–173

    CAS  PubMed  Google Scholar 

  28. Geesink R (2002) Osteoconductive coatings for total joint arthroplasty. Clinic Orthop Relat Res 395:53–65

    Article  Google Scholar 

  29. Van Kleunen JP, Lee GC, Lementowski PW, Nelson CL, Garino JP (2009) Acetabular revisions using trabecular metal cups and augments. J Arthropl 24(6):64–68

    Article  Google Scholar 

  30. Wang Y, Khor KA, Cheang P (1998) Thermal spraying of functionally graded calcium phosphate coatings for biomedical implants. J Therm Spray Technol 7:50–57

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oreste Moreschini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Moreschini, O., Pelle, S. (2014). Biomechanics and Prosthetic Osseointegration. In: Albanese, C.V., Faletti, C. (eds) Imaging of Prosthetic Joints. Springer, Milano. https://doi.org/10.1007/978-88-470-5483-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5483-7_4

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5482-0

  • Online ISBN: 978-88-470-5483-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics