Skip to main content

Bone Matrix Proteins and Mineralization Process

  • Chapter
Imaging of Prosthetic Joints

Abstract

The composition and spatial orientation of extracellular matrix vary for each tissue type. In bone, it mainly consists of an organic phase, known as osteoid, which represents approximately 20 % of bone mass, and a mineral phase. The organic fraction of bone consists of over 90 % type I collagen, other minor collagens such as types III and V, and 5 % non-collagenous proteins. The non-collagenous proteins in bone include osteocalcin, osteonectin, alkaline phosphatase, osteopontin, bone sialoprotein, dental matrix protein 1, fibronectin, thrombospondin, vitronectin, and fibrillin. The mineral phase of bone is mostly hydroxyapatite [Ca10(PO4)6(OH)2], with small amounts of carbonate, magnesium, and acid phosphate, a calcium phosphate compound. The bone matrix also sequesters growth factors, acting as a reservoir for soluble inductive signals such as bone morphogenic protein. This chapter discusses (1) bone matrix proteins and (2) mineralization process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Niyibizi C, Eyre DR (1994) Structural characteristics of crosslinking sites in type V collagen of bone chain specificities and heterotypic links to type I collagen. Eur J Biochem 224:943–950

    Article  CAS  PubMed  Google Scholar 

  2. Pace JM, Chitayat D, Atkinson M, Wilcox WR et al (2002) A single amino acid substitution (D1441Y) in the carboxyl-terminal propeptide of the proa1(I) chain of type I collagen results in a lethal variant of osteogenesis imperfecta with features of dense bone diseases. J Med Genet 39:23–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Uitto J, Kouba D (2000) Cytokine modulation of extracellular matrix gene expression: relevance to fibrotic skin diseases. J Dermatol Sci 24:S60–S69

    Article  CAS  PubMed  Google Scholar 

  4. Myllyharju J, Kivirikko KI (2001) Collagens and collagen-related diseases. Ann Med 33:7–21

    Article  CAS  PubMed  Google Scholar 

  5. Asish K, Ghosh AK (2002) Factors involved in the regulation of type I collagen gene expression: implication in fibrosis. Exp Biol Med 227:301–314

    Google Scholar 

  6. Shekaran A, García AJ (2011) Extracellular matrix-mimetic adhesive biomaterials for bone repair. J Biomed Mater Res A 96(1):261–272

    Article  PubMed Central  PubMed  Google Scholar 

  7. Zhu W, Robey PG, Boskey AL (2007) The regulatory role of matrix proteins in mineralization of bone. Osteoporosis, Vol 1. Academic Press, San Diego, pp 191–240

    Google Scholar 

  8. Clemens TL, Karsenty G (2011) The osteoblast: an insulin target cell controlling glucose homeostasis. J Bone Miner Res 26(4):677–680

    Article  CAS  PubMed  Google Scholar 

  9. Ducy P, Desbois C, Boyce B et al (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382:448–452

    Article  CAS  PubMed  Google Scholar 

  10. Boskey AL, Gadaleta S, Gundberg C et al (1998) Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23:187–196

    Article  CAS  PubMed  Google Scholar 

  11. Ishida M, Amano S (2004) Osteocalcin fragment in bone matrix enhances osteoclast maturation at a late stage of osteoclast differentiation. J Bone Miner Metab 22:415–429

    Article  CAS  PubMed  Google Scholar 

  12. Kaisa KI et al (2004) Release of intact and fragmented osteocalcin molecules from bone matrix during bone resorption in vitro. J Biol Chem 279:18361–18369

    Article  Google Scholar 

  13. Lee NK, Sowa H, Hinoi E et al (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 30:456–469

    Article  Google Scholar 

  14. Ferron M, Wei J, Yoshizawa T et al (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142:296–308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Boström K et al (2001) Matrix GLA protein modulates differentiation induced by bone morphogenetic protein-2 in C3H10T1/2 cells. J Biol Chem 276:14044–14052

    PubMed  Google Scholar 

  16. Price PA (1989) Gla-containing proteins of bone. Connect Tissue Res 21:51–69

    Article  CAS  PubMed  Google Scholar 

  17. Luo G, Ducy P, McKee MD et al (1997) Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386:78–81

    Article  CAS  PubMed  Google Scholar 

  18. El-Maadawy S, Kaartinen MT, Schinke T et al (2003) Cartilage formation and calcification in arteries of mice lacking matrix Gla protein. Connect Tissue Res 44:272–278

    Article  CAS  PubMed  Google Scholar 

  19. Sodek KL, Tupy JH, Sodek J et al (2000) Relationships between bone protein and mineral in developing porcine long bone and calvaria. Bone 26:189–198

    Article  CAS  PubMed  Google Scholar 

  20. Delany AM, Hankenson KD (2009) Thrombospondin-2 and SPARC/osteonectin are critical regulators of bone remodeling. J Cell Commun Signal 3:227–238

    Article  PubMed Central  PubMed  Google Scholar 

  21. Butch AW, Goodnow TT, Brown WS et al (1989) Stratus automated creatine kinase-MB assay evaluated: identification and elimination of falsely increased results associated with a high-molecular-mass form of alkaline phosphatase. Clin Chem 35(10):2048–2053

    CAS  PubMed  Google Scholar 

  22. Bonucci E, Silvestrini G, Bianco P (1992) Extracellular alkaline phosphatase activity in mineralizing matrices of cartilage and bone: ultrastructural localization using a cerium-based method. Histochemistry 97:323–327

    Article  CAS  PubMed  Google Scholar 

  23. Fedde KN, Blair L, Silverstein J et al (1999) Whyte: alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J Bone Miner Res 14:2015–2026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Jaffe IZ, Tintut Y, Newfell BG et al (2007) Mineralocorticoid receptor activation promotes vascular cell calcification. Arterioscler Thromb Vasc Biol 27:799–805

    Article  CAS  PubMed  Google Scholar 

  25. Shao JS, Cai J, Towler DA (2006) Molecular mechanisms of vascular calcification: lessons learned from the aorta. Arterioscler Thromb Vasc Biol 26:1423–1430

    Article  CAS  PubMed  Google Scholar 

  26. Negrao MR, Keating E, Faria A et al (2006) Acute effect of tea, wine, beer, and polyphenols on ecto-alkaline phosphatase activity in human vascular smooth muscle cells. J Agric Food Chem 54:4982–4988

    Article  CAS  PubMed  Google Scholar 

  27. Sodek J, Ganss B, McKee MD (2000) Osteopontin. Crit Rev Oral Biol Med 11:279–303

    Article  CAS  PubMed  Google Scholar 

  28. Jono S, Peinado C, Giachelli CM (2000) Phosphorylation of osteopontin is required for inhibition of vascular smooth muscle cell calcification. J Biol Chem 275:20197–20203

    Article  CAS  PubMed  Google Scholar 

  29. Ishijima M, Rittling SR, Yamashita T et al (2001) Enhancement of osteoclastic bone resorption and suppression of osteoblastic bone formation in response to reduced mechanical stress do not occur in the absence of osteopontin. J Exp Med 193:399–404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Haylock DN, Nilsson SK (2006) Osteopontin: a bridge between bone and blood. Br J Haematol 34(5):467–474

    Article  Google Scholar 

  31. Sodek J, Chen J, Kasugai S et al (1992) Elucidating the functions of bone sialoprotein and osteopontin in bone formation. In: Slavkin H, Price P (eds) Chemistry and biology of mineralized tissues. Elsevier, Amsterdam, pp 297–306

    Google Scholar 

  32. Oldberg A, Franzen A, Heinegard D (1988) The primary structure of a cell-binding bone sialoprotein. J Biol Chem 263(36):19430–19432

    CAS  PubMed  Google Scholar 

  33. Raynal C, Delmas PD, Chenu C (1996) Bone sialoprotein stimulates in vitro bone resorption. Endocrinology 137(6):2347–2354

    CAS  PubMed  Google Scholar 

  34. Malaval L, Wade-Guèye NM, Chen F et al (2008) Bone sialoprotein plays a functional role in bone formation and osteoclastogenesis. J Exp Med 205:1145–1153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Seibel MJ, Woitge HG et al (1996) Serum immunoreactive bone sialoprotein as a new marker of bone turnover in metabolic and malignant bone disease. J Clin Endocrinol Metab 81:3289–3294

    CAS  PubMed  Google Scholar 

  36. Wolfgang W, Armbruster FP et al (1997) Bone sialoprotein in serum of patients with malignant bone disease. Clin Chem 43:85–91

    Google Scholar 

  37. Qin C, Huang B, Wygant JN et al (2006) A chondroitin sulfate chain attached to the bone dentin matrix protein 1 NH2-terminal fragment. J Biol Chem 281(12):8034–8040

    Article  CAS  PubMed  Google Scholar 

  38. Gericke A, Qin C, Sun Y et al (2010) Different forms of DMP1 play distinct roles in mineralization. J Dent Res 89:355–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Tartaix PH et al (2004) In vitro effects of dentin matrix protein 1 on hydroxyapatite formation provide insights into in vivo function. J Biol Chem 279:18115–18120

    Article  CAS  PubMed  Google Scholar 

  40. Narayanan K et al (2003) Dual functional roles of dentin matrix protein 1: implications in biomineralization and gene transcription by activation of intracellular Ca2+ store. J Biol Chem 278:17500–17508

    Article  CAS  PubMed  Google Scholar 

  41. Ye L, MacDougall M, Zhang S et al (2004) Deletion of dentin matrix protein-1 leads to a partial failure of maturation of predentin into dentin, hypomineralization, and expanded cavities of pulp and root canal during postnatal tooth development. J Biol Chem 279(18):19141–19148

    Article  CAS  PubMed  Google Scholar 

  42. Ye L, Mishina Y, Chen D et al (2005) Dmp1-deficient mice display severe defects in cartilage formation responsible for a chondrodysplasia-like phenotype. J Biol Chem 280(7):6197–6203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Jain A, Fedarko NS, Collins MT et al (2004) Serum levels of matrix extracellular phosphoglycoprotein (MEPE) in normal humans correlate with serum phosphorus, parathyroid hormone and bone mineral density. J Clin Endocrinol Metab 89:4158–4161

    Article  CAS  PubMed  Google Scholar 

  44. Martin A, David V, Laurence JS et al (2008) Degradation of MEPE, DMP1, and release of SIBLING ASARM-peptides (minhibins): ASARM-peptide(s) are directly responsible for defective mineralization in HYP. Endocrinology 149:1757–1772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Martin A, David V, Laurence JS et al (2008) Degradation of MEPE, DMP1, and release of SIBLING ASARM-peptides (minhibins): ASARM-peptide(s) are directly responsible for defective mineralization in HYP. Endocrinology 149:1757–1772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Addison WN, Nakano Y, Loisel T et al (2008) MEPE-ASARM peptides control extracellular matrix mineralization by binding to hydroxyapatite: an inhibition regulated by PHEX cleavage of ASARM. J Bone Miner Res 23:1638–1649

    Article  CAS  PubMed  Google Scholar 

  47. David V, Martin A, Hedge AM et al (2009) Matrix extracellular phosphoglycoprotein (MEPE) is a new bone renal hormone and vascularization modulator. Endocrinology 150:4012–4023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Stein GS, Lian JB (1993) Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev 14:424–442

    Article  CAS  PubMed  Google Scholar 

  49. Velling T, Risteli J, Wennerberg K et al (2002) Polymerization of type I and III collagens is dependent on fibronectin and enhanced by integrins α11β1 and α2β1. J Biol Chem 277:37377–37381

    Article  CAS  PubMed  Google Scholar 

  50. Sottile J, Hocking DC (2002) Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol Biol Cell 13:3546–3559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Couchourel D et al (1999) Effects of fibronectin on hydroxyapatite formation. J Inorg Biochem 73:129–136

    Article  CAS  PubMed  Google Scholar 

  52. Bentmann A, Kawelke N, Moss D et al (2010) Circulating fibronectin affects bone matrix, whereas osteoblast fibronectin modulates osteoblast function. J Bone Miner Res 25(4):706–715

    CAS  PubMed  Google Scholar 

  53. Armstrong LC, Bornstein P (2003) Thrombospondins 1 and 2 function as inhibitors of angiogenesis. Matrix Biol 22:63–71

    Article  CAS  PubMed  Google Scholar 

  54. Hankenson KD, Bain SD, Kyriakides TR et al (2000) Increased marrow-derived osteoprogenitor cells and endosteal bone formation in mice lacking thrombospondin 2. J Bone Miner Res 15:851–862

    Article  CAS  PubMed  Google Scholar 

  55. Hankenson KD, Bornstein P (2002) The secreted protein thrombospondin 2 is an autocrine inhibitor of marrow stromal cell proliferation. J Bone Miner Res 17:415–425

    Article  CAS  PubMed  Google Scholar 

  56. Alford AI, Terkhorn SP, Reddy AB, Hankenson KD (2010) Thrombospondin-2 regulates matrix mineralization in MC3T3- E1 pre-osteoblasts. Bone 46:464–471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Hess S, Kanse SM, Kost C et al (1995) The versatility of adhesion receptor ligands in haemostasis: morpho-regulatory functions of vitronectin. Thromb Haemost 74:258–265

    CAS  PubMed  Google Scholar 

  58. Schvartz I, Seger D, Shaltiel S (1999) Vitronectin. Int J Biochem Cell Biol 31(5):539–544

    Article  CAS  PubMed  Google Scholar 

  59. Ramirez F, Pereira L et al (1999) The fibrillins. Int J Biochem Cell Biol 31:255–259

    Article  CAS  PubMed  Google Scholar 

  60. Boskey AL (1998) Biomineralization: conflicts, challenges, and opportunities. J Cell Biochem 30:83–91

    Article  Google Scholar 

  61. Harmey D, Hessle L, Narisawa S et al (2004) concerted regulation of inorganic pyrophosphate and osteopontin by Akp2, Enpp 1, and Ank: an integrated model of the pathogenesis of mineralization disorders. Am J Pathol 164:1199–1209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Tesch W, Vandenbos T, Roschgr P et al (2003) Orientation of mineral crystallites and mineral density during skeletal development in mice deficient in tissue nonspecific alkaline phosphatase. J Bone Miner Res 18:117–125

    Article  CAS  PubMed  Google Scholar 

  63. Santini D, Pantano F, Vincenzi B et al (2012) The role of bone microenvironment, vitamin D and calcium. Recent Results Cancer Res 192:33–64

    Article  CAS  PubMed  Google Scholar 

  64. Liu S, Tang W, Zhou J et al (2006) Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol 17:1305–1315

    Article  CAS  PubMed  Google Scholar 

  65. Shimada T, Kakitani M, Yamazaki Y et al (2004) Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 113:561–568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Wang H, Yoshiko Y, Yamamoto R et al (2008) Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. J Bone Miner Res 23:939–948

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Colucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Tamma, R., Carbone, C., Colucci, S. (2014). Bone Matrix Proteins and Mineralization Process. In: Albanese, C.V., Faletti, C. (eds) Imaging of Prosthetic Joints. Springer, Milano. https://doi.org/10.1007/978-88-470-5483-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5483-7_2

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5482-0

  • Online ISBN: 978-88-470-5483-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics