Skip to main content

Renal Masses

  • Chapter
  • First Online:
  • 1210 Accesses

Abstract

MDCT is the mainstay in the characterization and staging of renal masses. The examination needs to be performed before and after administration of intravenous contrast material. Pre-contrast images are used for baseline density measurements in both solid and complex cystic masses, but also provide information about morphological and structural features; post-contrast images are used to evaluate contrast-enhancement that do not necessarily indicate malignancy of a renal mass but represents the diagnostic clue that permits to differentiate surgery-needing from non-surgery-needing renal masses. The evaluation of cystic and solid renal masses represents one of the most investigated applications of dual-energy CT technology. Similar to current single-energy CT imaging evaluation of a mass, the virtual unenhanced images can be used to replace the true unenhanced CT acquisition. The attenuation of the lesion on the virtual unenhanced series can serve as a baseline to compare with the contrast-enhanced series. Several studies demonstrated that no significant difference in the attenuation of renal lesions between true and virtual unenhanced images exists. The possibility of omitting the true unenhanced scan permits to achieve a considerable radiation dose saving in renal lesions imaging. Dual-energy color-coded iodine overlay images permit to immediately depict the presence of contrast medium within a mass by means of a color display. The direct visualization of iodine signal within the mass differentiates a cyst from a solid lesion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tada S, Yamagishi J, Kobayashi H et al (1983) The incidence of simple renal cysts by computed tomography. Clin Radiol 34:437–439

    Article  PubMed  CAS  Google Scholar 

  2. Jayson M, Sanders H (1998) Increased incidence of serendipitously discovered renal cell carcinoma. Urology 51:203

    Article  PubMed  CAS  Google Scholar 

  3. Konnak JW, Grossman HB (1985) Renal cell carcinoma as an incidental finding. J Urol 134:1094–1096

    PubMed  CAS  Google Scholar 

  4. Luciani LG, Cestari R, Tallarigo C (2000) Incidental renal cell carcinoma-age and stage characterization and clinical implications: study of 1092 patients (1982–1997). Urology 56:58–62

    Article  PubMed  CAS  Google Scholar 

  5. Israel GM, Bosniak MA (2005) How I do it: evaluating renal masses. Radiology 236:441–450

    Article  PubMed  Google Scholar 

  6. Siegel R, Ward E, Brawley O et al (2011) Cancer statistics, 2011. CA Cancer J Clin 61:212–236

    Article  PubMed  Google Scholar 

  7. Lopez-Beltran A, Scarpelli M, Montironi R et al (2006) 2004 WHO Classification of the Renal Tumors of the Adults. Eur Urol 49:798–805

    Article  PubMed  Google Scholar 

  8. Grignon DJ, Che M (2005) Clear cell renal cell carcinoma. Clin Lab Med 25:305–316

    Article  PubMed  Google Scholar 

  9. Eble JN, Sauter G, Epstein JI et al (2004) Pathology and genetics. Tumors of the urinary system and male genital organs. IARC Press, Lyon

    Google Scholar 

  10. Brunelli M, Eble JN, Zhang S et al (2005) Eosinophilic and classic chromophobe renal cell carcinomas have similar frequent losses of multiple chromosomes from among chromosomes 1, 2, 6, 10, and 17, and this pattern of genetic abnormality is not present in renal oncocytoma. Mod Pathol 18:161–169

    Article  PubMed  CAS  Google Scholar 

  11. Mostofi FK, Davis CJ (1998) Histological typing of kidney tumors. Springer, Berlin

    Book  Google Scholar 

  12. Wagner BJ, Wong-You-Cheong JJ, Davis CJ Jr (1997) Adult renal Hamartomas. Radiographics 17:155–169

    PubMed  CAS  Google Scholar 

  13. Bosniak MA (1986) The current radiological approach to renal cysts. Radiology 158:1–10

    PubMed  CAS  Google Scholar 

  14. Harisinghani MG, Maher MM, Gervais DA (2003) Incidence of Malignancy in Complex Cystic Renal Masses (Bosniak Category III): Should Imaging-Guided Biopsy Precede Surgery? AJR 180:755–758

    Article  PubMed  Google Scholar 

  15. Sauk SC, Hsu MS, Margolis DJ et al (2011) Clear cell renal cell carcinoma: multiphasic multidetector CT imaging features help predict genetic karyotypes. Radiology 261:854–862

    Article  PubMed  Google Scholar 

  16. Israel GM, Bosniak MA (2008) Pitfalls in Renal Mass Evaluation and How to Avoid Them. Radiographics 28:1325–1338

    Article  PubMed  Google Scholar 

  17. Birnbaum BA, Jacobs JE, Ramchandani P (1996) Multiphasic renal CT: comparison of renal mass enhancement during the corticomedullary and nephrographic phases. Radiology 200:753–758

    PubMed  CAS  Google Scholar 

  18. Cohan RH, Sherman LS, Korobkin M et al (1995) Renal masses: assessment of corticomedullary-phase and nephrographic-phase CT scans. Radiology 196:445–451

    PubMed  CAS  Google Scholar 

  19. Herts BR, Coll DM, Novick AC et al (2002) Enhancement characteristics of papillary renal neoplasms revealed on triphasic helical CT of the kidneys. AJR Am J Roentgenol 178:367–372

    Article  PubMed  Google Scholar 

  20. Israel GM, Silverman SG (2011) The incidental renal mass. Radiol Clin N Am 49:369–383

    Article  PubMed  Google Scholar 

  21. Bosniak MA (1997) Diagnosis and management of patients with complicated cystic lesions of the kidney. AJR Am J Roentgenol 169:819–821

    Article  PubMed  CAS  Google Scholar 

  22. Israel GM, Bosniak MA (2003) Follow-up CT of moderately complex cystic lesions of the kidney (Bosniak category IIF). AJR Am J Roentgenol 181:627–633

    Article  PubMed  Google Scholar 

  23. Israel GM, Bosniak MA (2003) Calcification in cystic renal masses: is it important in diagnosis? Radiology 226:47–52

    Article  PubMed  Google Scholar 

  24. Bosniak MA (1997) The use of the Bosniak classification system for renal cysts and cystic tumors. J Urol 157:1852–1853

    Article  PubMed  CAS  Google Scholar 

  25. Bosniak MA (1991) Difficulties in classifying cystic lesion of the kidney. Urol Radiol 13:91–93

    Google Scholar 

  26. Bosniak MA (1993) Problems in the radiologic diagnosis of renal parenchymal tumors. Urol Clin North Am 20:217–230

    PubMed  CAS  Google Scholar 

  27. Bosniak MA (1991) The small (less than or equal to 3.0 cm) renal parenchymal tumor: detection, diagnosis, and controversies. Radiology 179:307–317

    PubMed  CAS  Google Scholar 

  28. Hartman DS, Davis CJ, Johns T et al (1986) Cystic renal cell carcinoma. Urology 28:145–153

    Article  PubMed  CAS  Google Scholar 

  29. Murad T, Komaiko W, Oyasu R et al (1991) Multilocular cystic renal cell carcinoma. Am J Clin Pathol 95:633–637

    PubMed  CAS  Google Scholar 

  30. Bosniak MA (1996) Cystic renal masses: a reevaluation of the usefullness of the Bosniak Classification System (letter). Acad Radiol 3:981–984

    Article  PubMed  CAS  Google Scholar 

  31. Silverman SG, Israel GM, Herts BR et al (2008) Management of the incidental renal mass. Radiology 249:16–31

    Article  PubMed  Google Scholar 

  32. McGahan JP, Lamba R, Fisher J et al (2011) Is Segmental Enhancement Inversion on Enhanced Biphasic MDCT a Reliable Sign for the Noninvasive Diagnosis of Renal Oncocytomas? AJR Am J Roentgenol 197:W674–W679

    Article  PubMed  Google Scholar 

  33. Millet I, Curros Doyon F, Hoa D et al (2011) Characterization of Small Solid Renal Lesions: Can Benign and Malignant Tumors Be Differentiated With CT? AJR Am J Roentgenol 197:887–896

    Article  PubMed  Google Scholar 

  34. Bosniak MA, Megibow AJ, Hulnick DH et al (1988) CT diagnosis of renal angiomyolipoma: the importance of detecting small amounts of fat. AJR Am J Roentgenol 151:497–501

    Article  PubMed  CAS  Google Scholar 

  35. Inzaki M, Tanimoto A, Narimatsu Y et al (1997) Angiomyolipoma: imaging findings in lesions with minimal fat. Radiology 205:497–502

    Google Scholar 

  36. Birnbaum BA, Hindman N, Lee J et al (2007) Renal cyst pseudoenhancement: influence of multidetector CT reconstruction algorithm and scanner type in phantom model. Radiology 244:767–775

    Article  PubMed  Google Scholar 

  37. Maki DD, Birnbaum BA, Chakraborty DP et al (1999) Renal cyst pseudoenhancement: beam-hardening effects on CT numbers. Radiology 213:468–472

    PubMed  CAS  Google Scholar 

  38. Fornaro J, Leschka S, Hibbeln D et al (2011) Dual- and multi-energy CT: approach to functional imaging. Insights imaging 2:149–159

    Article  PubMed  Google Scholar 

  39. Johnson TR, Krauss B, Sedlmair M et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517

    Article  PubMed  Google Scholar 

  40. Petersilka M, Bruder H, Krauss B et al (2008) Technical principles of dual source CT. Eur J Radiol 68:362–368

    Article  PubMed  Google Scholar 

  41. Graser A, Johnson TR, Chandarana H et al (2009) Dual energy CT: preliminary observations and potential clinical applications in the abdomen. Eur Radiol 19:13–23

    Article  PubMed  Google Scholar 

  42. Fletcher JG, Takahashi N, Hartman R et al (2009) Dual-energy and dual-source CT: is there a role in the abdomen and pelvis? Radiol Clin North Am 47:41–57

    Article  PubMed  Google Scholar 

  43. Kaza R, Caoili EM, Cohan RH et al (2011) Distinguishing enhancing from nonenhancing renal lesions with fast kilovoltageswitching dual-energy CT. AJR Am J Roentgenol 197:1375–1381

    Article  PubMed  Google Scholar 

  44. Brown CL, Hartman RP, Dzyubak OP et al (2009) Dual-energy CT iodine overlay technique for characterization of renal masses as cyst or solid: a phantom feasibility study. Eur Radiol 19:1289–1295

    Article  PubMed  CAS  Google Scholar 

  45. Megibow AJ Sahani D (2012) Best practice: implementation and use of abdominal dual-energy CT in routine patient care. AJR Am J Roentgenol 199:S71–S77

    Google Scholar 

  46. Eusemann C, Holmes DR III, Schmidt B (2008) Dual energy CT: how the best blend both energies in one fused image? SPIE 6918 Medical imaging, San Diego

    Google Scholar 

  47. Kim KS, Lee JM, Kim SH et al (2010) Image fusion in dual energy computed tomography for detection of hypervascular liver hepatocellular carcinoma: phantom and preliminary studies. Invest Radiol 45:149–157

    Article  PubMed  Google Scholar 

  48. Yu L, Primak AN, Liu X et al (2009) Image quality optimization and evaluation of linearly mixed images in dual-source, dual-energy CT. Med Phys 36:1019–1024

    Article  PubMed  Google Scholar 

  49. Holmes DR, 3rd, Fletcher JG, Apel A, et al. (2008) Evaluation of non-linear blending in dual-energy computed tomography. Eur J Radiol 68:409–413

    Google Scholar 

  50. Apel A, Fletcher JG, Fidler JL et al (2011) Pilot multi-reader study demonstrating potential for dose reduction in dual energy hepatic CT using non linear blending of mixed kV image datasets. Eur Radiol 21:644–652

    Article  PubMed  Google Scholar 

  51. Ascenti G, Krauss B, Mazziotti S et al (2012) Dual-energy computed tomography (DECT) in renal masses: nonlinear versus linear blending. Acad Radiol 19:1186–1193

    Article  PubMed  Google Scholar 

  52. Graser A, Becker CR, Staehler M et al (2010) Single-phase dual-energy CT allows for characterization of renal masses as benign or malignant. Invest Radiol 45:399–405

    PubMed  Google Scholar 

  53. Graser A, Johnson TR, Hecht EM et al (2009) Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology 252:433–440

    Article  PubMed  Google Scholar 

  54. Ascenti G, Mazziotti S, Mileto A et al (2012) Dual-source dual-energy CT evaluation of complex cystic renal masses. AJR Am J Roentgenol 199:1026–1034

    Article  PubMed  Google Scholar 

  55. Heye T, Nelson RC, Ho LM et al (2012) Dual-energy CT applications in the abdomen. AJR Am J Roentgenol 199:S64–S70

    Article  PubMed  Google Scholar 

  56. Neville AM, Gupta RT, Miller CM et al (2011) Detection of renal lesion enhancement with dual-energy multidetector CT. Radiology 259:173–183

    Article  PubMed  Google Scholar 

  57. Ascenti G, Mileto A, Gaeta M et al (2013) Single-phase dual-energy CT urography in the evaluation of haematuria. Clin Radiol 68:87–94

    Article  Google Scholar 

  58. Kang SK, Kim D, Chandarana H (2011) Contemporary imaging of the renal mass. Curr Urol Rep 12:11–17

    Article  PubMed  Google Scholar 

  59. Chandarana H, Megibow AJ, Cohen BA et al (2011) Iodine quantification with dual-energy CT: phantom study and preliminary experience with renal masses. AJR Am J Roentgenol 196:693–700

    Article  Google Scholar 

  60. Ascenti G, Mileto A, Krauss B, et al. (2013) Distinguishing enhancing from nonenhancing renal masses with dual-source dual-energy CT: iodine quantification versus standard enhancement measurements. Eur Radiol doi:10.1007/s0030-013-2811-4

  61. Liu XL, Zhou JJ, Zeng MS et al (2013) Homogeneous high attenuation renal cysts and solid masses—differentiation with single phase dual energy computed tomography. Clin Radiol 68:198–205

    Article  Google Scholar 

  62. Karlo C, Lauber A, Gotti RP et al (2011) Dual-energy CT with tin filter technology for the discrimination of renal lesion proxies containing blood, protein, and contrast-agent. An experimental phantom study. Eur Radiol 21:385–392

    Article  PubMed  Google Scholar 

  63. Jung DC, Oh YT, Kim MD et al (2012) Usefulness of the virtual monochromatic image in dual-energy spectral CT for decreasing renal cyst pseudoenhancement: a phantom study. AJR Am J Roentgenol 199:1316–1319

    Article  PubMed  Google Scholar 

  64. Yamada S, Ueguchi T, Ukai I et al (2012) The potential of dual-energy virtual monochromatic imaging in reducing renal cyst pseudoenhancement: a phantom study. Nihon Hoshasen Gijutsu Gakkai Zasshi 68:1379–1384

    Article  PubMed  Google Scholar 

  65. Yu L, Leng S, McCollough CH (2012) Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol 199:S9–S15

    Article  PubMed  Google Scholar 

  66. Silva AC, Morse BG, Hara AK et al (2011) Dual-energy (spectral) CT: applications in abdominal imaging. Radiographics 31:1031–1046

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Ascenti .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Ascenti, G., Mileto, A., Krauss, B., Mazziotti, S., Sofia, C., Scribano, E. (2014). Renal Masses . In: CT of the Retroperitoneum. Springer, Milano. https://doi.org/10.1007/978-88-470-5469-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5469-1_3

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5468-4

  • Online ISBN: 978-88-470-5469-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics