Skip to main content

Dual-, Multi-, and Mono-Energy CT & Iodine: Basic Concepts and Clinical Applications

  • Chapter
  • First Online:
CT of the Retroperitoneum
  • 1236 Accesses

Abstract

In the following chapter, mono-, dual-, and multi-energy CT are briefly discussed along with possible clinical applications. Dual-energy computed tomography (DECT) implies the application of two different energies, adding to the classic single-energy multi-detector CT study, information yielded from material differentiation derived from the interaction between tissues and different energy levels. Multi-energy CT (spectral imaging) is a more specific material decomposition method. It implies material attenuation characteristics evaluation at multiple energies and in narrow ranges, using energy-sensitive detectors. Low-kVp mono-energetic CT protocols benefit from a higher conspicuity of contrast (iodine) in the lower-energy spectra and a lower-delivered ionizing dose. Dual-energy, multi-energy, and low-kVp mono-energy CT protocols present advantages and drawbacks. Being familiar with the relation existing between energy and contrast, and technical differences existing between dual-, multi-, and mono-energy CT protocols is necessary to exploit their diagnostic potential in our clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson TR, Krauss B, Sedlmair M, Grasruck M, Bruder H, Morhard D et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17(6):1510–1517

    Article  PubMed  Google Scholar 

  2. Coursey CA, Nelson RC, Boll DT, Paulson EK, Ho LM, Neville AM et al (2010) Dual-energy multidetector CT: how does it work, what can it tell us, and when can we use it in abdominopelvic imaging? Radiographics 30(4):1037–1055

    Article  PubMed  Google Scholar 

  3. Fornaro J, Leschka S, Hibbeln D, Butler A, Anderson N, Pache G et al (2011) Dual- and multi-energy CT: approach to functional imaging. Insights Imaging 2(2):149–159

    Article  PubMed  Google Scholar 

  4. Bauer RW, Kramer S, Renker M, Schell B, Larson MC, Beeres M et al (2011) Dose and image quality at CT pulmonary angiography-comparison of first and second generation dual-energy CT and 64-slice CT. Eur Radiol 21(10):2139–2147

    Article  PubMed  Google Scholar 

  5. Kalender WA, Perman WH, Vetter JR, Klotz E (1986) Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom Stud. Med Phys. 13(3):334–339

    Article  CAS  Google Scholar 

  6. Kalender WA (2005) CT: the unexpected evolution of an imaging modality. Eur Radiol 15(Suppl 4):D21–D24

    PubMed  Google Scholar 

  7. Silva AC, Morse BG, Hara AK, Paden RG, Hongo N, Pavlicek W (2011) Dual-energy (spectral) CT: applications in abdominal imaging. Radiographics, 31(4): 1031–1046; discussion 47–50

    Google Scholar 

  8. Remy-Jardin M, Faivre JB, Pontana F, Hachulla AL, Tacelli N, Santangelo T et al (2010) Thoracic applications of dual energy. Radiol Clin North Am 48(1):193–205

    Article  PubMed  Google Scholar 

  9. Vlahos I, Chung R, Nair A, Morgan R (2012) Dual-energy CT: vascular applications. AJR Am J Roentgenol 199(5 Suppl):S87–S97

    Article  PubMed  Google Scholar 

  10. Desai MA, Peterson JJ, Garner HW, Kransdorf MJ (2011) Clinical utility of dual-energy CT for evaluation of tophaceous gout. Radiographics, 31(5): 1365–1375; discussion 76–7

    Google Scholar 

  11. Gupta R, Phan CM, Leidecker C, Brady TJ, Hirsch JA, Nogueira RG et al (2010) Evaluation of dual-energy CT for differentiating intracerebral hemorrhage from iodinated contrast material staining. Radiology 257(1):205–211

    Article  PubMed  Google Scholar 

  12. Anderson NG, Butler AP, Scott NJ, Cook NJ, Butzer JS, Schleich N et al (2010) Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE. Eur Radiol 20(9):2126–2134

    Article  PubMed  CAS  Google Scholar 

  13. Rutherford RA, Pullan BR, Isherwood I (1976) X-ray energies for effective atomic number determination. Neuroradiology 11(1):23–28

    Article  PubMed  CAS  Google Scholar 

  14. Millner MR, McDavid WD, Waggener RG, Dennis MJ, Payne WH, Sank VJ (1979) Extraction of information from CT scans at different energies. Med Phys 6(1):70–71

    Article  PubMed  CAS  Google Scholar 

  15. Compton AH (1923) A quantum theory of the scattering of X-rays by light Elements. Phys Rev 21(5):483–502

    Article  CAS  Google Scholar 

  16. Bushberg JT (1998) The AAPM/RSNA physics tutorial for residents. X-ray interactions. Radiographics 18(2):457–468

    PubMed  CAS  Google Scholar 

  17. Riederer SJ, Mistretta CA (1977) Selective iodine imaging using K-edge energies in computerized x-ray tomography. Med Phys 4(6):474–481

    Article  PubMed  CAS  Google Scholar 

  18. Abudurexiti A, Kameda M, Sato E, Abderyim P, Enomoto T, Watanabe M et al (2010) Demonstration of iodine K-edge imaging by use of an energy-discrimination X-ray computed tomography system with a cadmium telluride detector. Radiol Phys Technol 3(2):127–135

    Article  PubMed  Google Scholar 

  19. Wintersperger B, Jakobs T, Herzog P, Schaller S, Nikolaou K, Suess C et al (2005) Aorto-iliac multidetector-row CT angiography with low kV settings: improved vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol 15(2):334–341

    Article  PubMed  CAS  Google Scholar 

  20. Schueller-Weidekamm C, Schaefer-Prokop CM, Weber M, Herold CJ, Prokop M (2006) CT angiography of pulmonary arteries to detect pulmonary embolism: improvement of vascular enhancement with low kilovoltage settings. Radiology 241(3):899–907

    Article  PubMed  Google Scholar 

  21. Yeh BM, Shepherd JA, Wang ZJ, Teh HS, Hartman RP, Prevrhal S (2009) Dual-energy and low-kVp CT in the abdomen. AJR Am J Roentgenol 193(1):47–54

    Article  PubMed  Google Scholar 

  22. Marin D, Nelson RC, Samei E, Paulson EK, Ho LM, Boll DT et al (2009) Hypervascular liver tumors: low tube voltage, high tube current multidetector CT during late hepatic arterial phase for detection–initial clinical experience. Radiology 251(3):771–779

    Article  PubMed  Google Scholar 

  23. Marin D, Nelson RC, Schindera ST, Richard S, Youngblood RS, Yoshizumi TT et al (2010) Low-tube-voltage, high-tube-current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm–initial clinical experience. Radiology 254(1):145–153

    Article  PubMed  Google Scholar 

  24. Yeh BM, Abdominal CT (2011) At low peak tube potential settings brings promises, but new rules apply. AJR Am J Roentgenol 196(6):1322–1323

    Article  PubMed  Google Scholar 

  25. Gnannt R, Winklehner A, Goetti R, Schmidt B, Kollias S, Alkadhi H (2012) Low kilovoltage CT of the neck with 70 kVp: comparison with a standard protocol. AJNR Am J Neuroradiol 33(6):1014–1019

    Article  PubMed  CAS  Google Scholar 

  26. McNitt-Gray MF (2002) AAPM/RSNA physics tutorial for residents: topics in CT radiation dose in CT. Radiographics 22(6):1541–1553

    Article  PubMed  Google Scholar 

  27. Ascenti G, Mazziotti S, Lamberto S, Bottari A, Caloggero S, Racchiusa S et al (2011) Dual-energy CT for detection of endoleaks after endovascular abdominal aneurysm repair: usefulness of colored iodine overlay. AJR Am J Roentgenol 196(6):1408–1414

    Article  PubMed  Google Scholar 

  28. Godoy MC, Naidich DP, Marchiori E, Leidecker C, Schmidt B, Assadourian B et al (2010) Single-acquisition dual-energy multidetector computed tomography: analysis of vascular enhancement and postprocessing techniques for evaluating the thoracic aorta. J Comput Assist Tomogr 34(5):670–677

    Article  PubMed  Google Scholar 

  29. Sommer WH, Johnson TR, Becker CR, Arnoldi E, Kramer H, Reiser MF et al (2009) The value of dual-energy bone removal in maximum intensity projections of lower extremity computed tomography angiography. Invest Radiol 44(5):285–292

    Article  PubMed  Google Scholar 

  30. Yamamoto S, McWilliams J, Arellano C, Marfori W, Cheng W, McNamara T et al (2009) Dual-energy CT angiography of pelvic and lower extremity arteries: dual-energy bone subtraction versus manual bone subtraction. Clin Radiol 64(11):1088–1096

    Article  PubMed  CAS  Google Scholar 

  31. Meyer BC, Werncke T, Hopfenmuller W, Raatschen HJ, Wolf KJ, Albrecht T (2008) Dual energy CT of peripheral arteries: effect of automatic bone and plaque removal on image quality and grading of stenoses. Eur J Radiol 68(3):414–422

    Article  PubMed  CAS  Google Scholar 

  32. Brockmann C, Jochum S, Sadick M, Huck K, Ziegler P, Fink C et al (2009) Dual-energy CT angiography in peripheral arterial occlusive disease. Cardiovasc Intervent Radiol 32(4):630–637

    Article  PubMed  Google Scholar 

  33. Thomas C, Korn A, Ketelsen D, Danz S, Tsifikas I, Claussen CD et al (2010) Automatic lumen segmentation in calcified plaques: dual-energy CT versus standard reconstructions in comparison with digital subtraction angiography. AJR Am J Roentgenol 194(6):1590–1595

    Article  PubMed  Google Scholar 

  34. Werncke T, Albrecht T, Wolf KJ, Meyer BC (2010) Dual energy CT of the peripheral arteries: a phantom study to assess the effect of automatic plaque removal on stenosis grading. Rofo. 182(8):682–689

    Article  PubMed  CAS  Google Scholar 

  35. Uotani K, Watanabe Y, Higashi M, Nakazawa T, Kono AK, Hori Y et al (2009) Dual-energy CT head bone and hard plaque removal for quantification of calcified carotid stenosis: utility and comparison with digital subtraction angiography. Eur Radiol 19(8):2060–2065

    Article  PubMed  Google Scholar 

  36. Morhard D, Fink C, Graser A, Reiser MF, Becker C, Johnson TR (2009) Cervical and cranial computed tomographic angiography with automated bone removal: dual energy computed tomography versus standard computed tomography. Invest Radiol 44(5):293–297

    Article  PubMed  Google Scholar 

  37. Lell MM, Kramer M, Klotz E, Villablanca P, Ruehm SG (2009) Carotid computed tomography angiography with automated bone suppression: a comparative study between dual energy and bone subtraction techniques. Invest Radiol 44(6):322–328

    Article  PubMed  Google Scholar 

  38. Ma R, Liu C, Deng K, Song SJ, Wang DP, Huang L (2010) Cerebral artery evaluation of dual energy CT angiography with dual source CT. Chin Med J (Engl). 123(9):1139–1144

    PubMed  Google Scholar 

  39. Henzler T, Porubsky S, Kayed H, Harder N, Krissak UR, Meyer M et al (2011) Attenuation-based characterization of coronary atherosclerotic plaque: comparison of dual source and dual energy CT with single-source CT and histopathology. Eur J Radiol 80(1):54–59

    Article  PubMed  Google Scholar 

  40. Watanabe Y, Nakazawa T, Higashi M, Itoh T, Naito H (2011) Assessment of calcified carotid plaque volume: comparison of contrast-enhanced dual-energy CT angiography and native single-energy CT. AJR Am J Roentgenol 196(6):W796–W799

    Article  PubMed  Google Scholar 

  41. Postma AA, Hofman PA, Stadler AA, van Oostenbrugge RJ, Tijssen MP, Wildberger JE (2012) Dual-energy CT of the brain and intracranial vessels. AJR Am J Roentgenol 199(5 Suppl):S26–S33

    Article  PubMed  Google Scholar 

  42. Robinson E, Babb J, Chandarana H, Macari M (2010) Dual source dual energy MDCT: comparison of 80 kVp and weighted average 120 kVp data for conspicuity of hypo-vascular liver metastases. Invest Radiol 45(7):413–418

    PubMed  Google Scholar 

  43. Zhang LJ, Peng J, Wu SY, Wang ZJ, Wu XS, Zhou CS et al (2010) Liver virtual non-enhanced CT with dual-source, dual-energy CT: a preliminary study. Eur Radiol 20(9):2257–2264

    Article  PubMed  Google Scholar 

  44. Toepker M, Moritz T, Krauss B, Weber M, Euller G, Mang T et al (2012) Virtual non-contrast in second-generation, dual-energy computed tomography: reliability of attenuation values. Eur J Radiol 81(3):e398–e405

    Article  PubMed  Google Scholar 

  45. Yu L, Liu X, Leng S, Kofler JM, Ramirez-Giraldo JC, Qu M et al (2009) Radiation dose reduction in computed tomography: techniques and future perspective. Imaging Med 1(1):65–84

    Article  PubMed  Google Scholar 

  46. Petersilka M, Bruder H, Krauss B, Stierstorfer K, Flohr TG (2008) Technical principles of dual source CT. Eur J Radiol 68(3):362–368

    Article  PubMed  Google Scholar 

  47. Graser A, Becker CR, Staehler M, Clevert DA, Macari M, Arndt N et al (2010) Single-phase dual-energy CT allows for characterization of renal masses as benign or malignant. Invest Radiol 45(7):399–405

    PubMed  Google Scholar 

  48. Gupta RT, Ho LM, Marin D, Boll DT, Barnhart HX, Nelson RC (2010) Dual-energy CT for characterization of adrenal nodules: initial experience. AJR Am J Roentgenol 194(6):1479–1483

    Article  PubMed  Google Scholar 

  49. Leschka S, Stolzmann P, Baumuller S, Scheffel H, Desbiolles L, Schmid B et al (2010) Performance of dual-energy CT with tin filter technology for the discrimination of renal cysts and enhancing masses. Acad Radiol 17(4):526–534

    Article  PubMed  Google Scholar 

  50. Pansini V, Remy-Jardin M, Faivre JB, Schmidt B, Dejardin-Bothelo A, Perez T et al (2009) Assessment of lobar perfusion in smokers according to the presence and severity of emphysema: preliminary experience with dual-energy CT angiography. Eur Radiol 19(12):2834–2843

    Article  PubMed  Google Scholar 

  51. Thieme SF, Johnson TR, Lee C, McWilliams J, Becker CR, Reiser MF et al (2009) Dual-energy CT for the assessment of contrast material distribution in the pulmonary parenchyma. AJR Am J Roentgenol 193(1):144–149

    Article  PubMed  Google Scholar 

  52. Ruzsics B, Lee H, Zwerner PL, Gebregziabher M, Costello P, Schoepf UJ (2008) Dual-energy CT of the heart for diagnosing coronary artery stenosis and myocardial ischemia-initial experience. Eur Radiol 18(11):2414–2424

    Article  PubMed  Google Scholar 

  53. Schwarz F, Ruzsics B, Schoepf UJ, Bastarrika G, Chiaramida SA, Abro JA et al (2008) Dual-energy CT of the heart–principles and protocols. Eur J Radiol 68(3):423–433

    Article  PubMed  Google Scholar 

  54. Gorgos A, Remy-Jardin M, Duhamel A, Faivre JB, Tacelli N, Delannoy V et al (2009) Evaluation of peripheral pulmonary arteries at 80 kV and at 140 kV: dual-energy computed tomography assessment in 51 patients. J Comput Assist Tomogr 33(6):981–986

    Article  PubMed  Google Scholar 

  55. Szucs-Farkas Z, Semadeni M, Bensler S, Patak MA, von Allmen G, Vock P et al (2009) Endoleak detection with CT angiography in an abdominal aortic aneurysm phantom: effect of tube energy, simulated patient size, and physical properties of endoleaks. Radiology 251(2):590–598

    Article  PubMed  Google Scholar 

  56. Chandarana H, Godoy MC, Vlahos I, Graser A, Babb J, Leidecker C et al (2008) Abdominal aorta: evaluation with dual-source dual-energy multidetector CT after endovascular repair of aneurysms–initial observations. Radiology 249(2):692–700

    Article  PubMed  Google Scholar 

  57. Stolzmann P, Frauenfelder T, Pfammatter T, Peter N, Scheffel H, Lachat M et al (2008) Endoleaks after endovascular abdominal aortic aneurysm repair: detection with dual-energy dual-source CT. Radiology 249(2):682–691

    Article  PubMed  Google Scholar 

  58. Numburi UD, Schoenhagen P, Flamm SD, Greenberg RK, Primak AN, Saba OI et al (2010) Feasibility of dual-energy CT in the arterial phase: imaging after endovascular aortic repair. AJR Am J Roentgenol 195(2):486–493

    Article  PubMed  Google Scholar 

  59. Roessl E, Proksa R (2007) K-edge imaging in x-ray computed tomography using multi-bin photon counting detectors. Phys Med Biol 52(15):4679–4696

    Article  PubMed  CAS  Google Scholar 

  60. Schlomka JP, Roessl E, Dorscheid R, Dill S, Martens G, Istel T et al (2008) Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography. Phys Med Biol 53(15):4031–4047

    Article  PubMed  CAS  Google Scholar 

  61. Zhang D, Li X, Liu B (2011) Objective characterization of GE discovery CT750 HD scanner: gemstone spectral imaging mode. Med Phys 38(3):1178–1188

    Article  PubMed  Google Scholar 

  62. Fujikawa A, Matsuoka S, Kuramochi K, Yoshikawa T, Yagihashi O, Kurihara Y et al (2011) Vascular enhancement and image quality of CT venography: comparison of standard and low kilovoltage settings. AJR Am J Roentgenol 197(4):838–843

    Article  PubMed  Google Scholar 

  63. Cho ES, Yu JS, Ahn JH, Kim JH, Chung JJ, Lee HK et al (2012) CT angiography of the renal arteries: comparison of lower-tube-voltage CTA with moderate-concentration iodinated contrast material and conventional CTA. AJR Am J Roentgenol 199(1):96–102

    Article  PubMed  Google Scholar 

  64. Marin D, Nelson RC, Barnhart H, Schindera ST, Ho LM, Jaffe TA et al (2010) Detection of pancreatic tumors, image quality, and radiation dose during the pancreatic parenchymal phase: effect of a low-tube-voltage, high-tube-current CT technique–preliminary results. Radiology 256(2):450–459

    Article  PubMed  Google Scholar 

  65. Schindera ST, Nelson RC, Mukundan S Jr, Paulson EK, Jaffe TA, Miller CM et al (2008) Hypervascular liver tumors: low tube voltage, high tube current multi-detector row CT for enhanced detection–phantom study. Radiology 246(1):125–132

    Article  PubMed  Google Scholar 

  66. Hara AK, Paden RG, Silva AC, Kujak JL, Lawder HJ, Pavlicek W (2009) Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. AJR Am J Roentgenol 193(3):764–771

    Article  PubMed  Google Scholar 

  67. Schindera ST, Diedrichsen L, Muller HC, Rusch O, Marin D, Schmidt B et al (2011) Iterative reconstruction algorithm for abdominal multidetector CT at different tube voltages: assessment of diagnostic accuracy, image quality, and radiation dose in a phantom study. Radiology 260(2):454–462

    Article  PubMed  Google Scholar 

  68. Martinsen AC, Saether HK, Hol PK, Olsen DR, Skaane P (2012) Iterative reconstruction reduces abdominal CT dose. Eur J Radiol 81(7):1483–1487

    Article  PubMed  Google Scholar 

  69. Mitsumori LM, Shuman WP, Busey JM, Kolokythas O, Koprowicz KM (2012) Adaptive statistical iterative reconstruction versus filtered back projection in the same patient: 64 channel liver CT image quality and patient radiation dose. Eur Radiol 22(1):138–143

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Catalano .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Catalano, C., Geiger, D. (2014). Dual-, Multi-, and Mono-Energy CT & Iodine: Basic Concepts and Clinical Applications. In: CT of the Retroperitoneum. Springer, Milano. https://doi.org/10.1007/978-88-470-5469-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5469-1_2

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5468-4

  • Online ISBN: 978-88-470-5469-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics