Hypoparathyroidism, Dwarfism, Medullary Stenosis of Long Bones, and Eye Abnormalities (Kenny-Caffey Syndrome) and Hypoparathyroidism, Retardation, and Dysmorphism (Sanjad-Sakati) Syndrome

  • Eli Hershkovitz
  • Ruti ParvariEmail author


The syndrome of hypoparathyroidism, retardation (of growth and mental development) with dysmorphic features, HRD syndrome, also known as Sanjad-Sakati syndrome has been described mostly in Arab patients and is inherited by an autosomal recessive mode. The dominantly inherited Kenny-Caffey syndrome is currently recognized to be allelic to a lethal disorder, osteocraniostenosis (OCS). KCS and HRD share the clinical presentation of hypoparathyroidism, the facial dysmorphic features of deep-set eyes, and micrognathia and dental anomalies. However, KCS/OCS and HRD syndrome are separate clinical and genetic disorders. KCS/OCS is caused by heterozygous mutations in the FAM111A gene, while HRD syndrome is observed in patients with homozygous or compound heterozygous mutations of the TBCE gene. The currently known functions of these genes cannot explain the clinical symptoms, thus further research into their mode of function is needed.


Hypoparathyroidism Dwarfism Medullary stenosis of long bones Eye abnormalities Kenny-Caffey Syndrome Retardation Dysmorphism Sanjad-Sakati syndrome TBCE FAM111A 


  1. 1.
    Kenny FM, Linarelli L (1966) Dwarfism and cortical thickening of tubular bones: transient hypocalcemia in a mother and son. Am J Dis Child 111:201–207CrossRefPubMedGoogle Scholar
  2. 2.
    Caffey JP (1967) Congenital stenosis of medullary spaces in tubular bones and calvaria in two proportionate dwarfs, mother and son, coupled with transitory hypocalcemic tetany. Am J Roentgenol Radium Ther Nucl Med 100:1–11CrossRefPubMedGoogle Scholar
  3. 3.
    Verloes A, Narcy F, Grattagliano B et al (1994) Osteocraniostenosis. J Med Genet 31:772–778CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Elliott AM, Wilcox WR, Spear GS et al (2006) Osteocraniostenosis–hypomineralized skull with gracile long bones and splenic hypoplasia. Four new cases with distinctive chondro-osseous morphology. Am J Med Genet 140A:1553–1563CrossRefGoogle Scholar
  5. 5.
    Sanjad SA, Sakati NA, Abu Obsa YK et al (1991) A new syndrome of congenital hypoparathyroidism severe growth failure and dysmorphic features. Arch Dis Child 66:193–196CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Alawadi SA, Azab AS, Bastaki L et al (2009) Sanjad-Sakati syndrome/Kenny-Caffey syndrome type 1: a study of 21 cases in Kuwait. East Mediterr Health J 15:345–349PubMedGoogle Scholar
  7. 7.
    Hershkovitz E, Parvari R, Diaz GA et al (2004) Hypoparathyroidism, retardation and dysmorphism (HRD) syndrome – a review. J Pediatr Endocrinol Metab 17:1583–1590CrossRefPubMedGoogle Scholar
  8. 8.
    Albaramki J, Akl K, Al-Muhtaseb A et al (2012) Sanjad Sakati syndrome: a case series from Jordan. East Mediterr Health J 18:527–531PubMedGoogle Scholar
  9. 9.
    Elhassanien AF, Alghaiaty HAA (2013) Neurological manifestations in children with Sanjad–Sakati syndrome. Int J Gen Med 6:393–398CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hershkovitz E, Rozin I, Limony Y et al (2007) Hypoparathyroidism, retardation, and dysmorphism syndrome: impaired early growth and increased susceptibility to severe infections due to hyposplenism and impaired polymorphonuclear cell functions. Pediatr Res 62:505–509CrossRefPubMedGoogle Scholar
  11. 11.
    Al Malik MI (2004) The dentofacial features of Sanjad–Sakati syndrome: a case report. Int J Paediatr Dent 14:136–140CrossRefPubMedGoogle Scholar
  12. 12.
    Moussaid Y, Griffiths D, Richard B et al (2012) Oral manifestations of patients with Kennye-Caffey syndrome. Eur J Med Genet 55:441–445CrossRefPubMedGoogle Scholar
  13. 13.
    Al Dhoyan N, Al Hemidan AI, Ozand PT (2006) Ophthalmic manifestations of Sanjad-Sakati syndrome. Ophthalmic Genet 27:83–87CrossRefPubMedGoogle Scholar
  14. 14.
    Khan AO, Al-Assiri A, Al-Mesfer S (2007) Ophthalmic features of hypoparathyroidism-retardation-dysmorphism. J AAPOS 11:288–290CrossRefPubMedGoogle Scholar
  15. 15.
    Pal K, Moammar H, Mitra DK (2010) Visceral myopathy causing chronic intestinal pseudoobstruction and intestinal failure in a child with Sanjad-Sakati syndrome. J Pediatr Surg 45:430–434CrossRefPubMedGoogle Scholar
  16. 16.
    Hershkovitz E, Shalitin S, Levy J et al (1995) The new syndrome of congenital hypoparathyroidism, growth retardation, and developmental delay. A report of six patients. Isr J Med Sci 31:293–297PubMedGoogle Scholar
  17. 17.
    Richardson RJ, Kirk JMW (1990) Short stature, mental retardation and hypoparathyroidism: a new syndrome. Arch Dis Child 65:1113–1117CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Khan KTS, Uma R, Usha R et al (1997) Kenny–Caffey syndrome in six Bedouin sibships: autosomal recessive inheritance is confirmed. Am J Med Genet 69:126–132CrossRefPubMedGoogle Scholar
  19. 19.
    Kamalesh P (2010) Sanjad – Sakati syndrome in a neonate. Indian Pediatr 47:443–444CrossRefGoogle Scholar
  20. 20.
    Rafique B, Al-Yaarubi S (2010) Sanjad-Sakati syndrome in Omani children. Oman Med J 25:227–229PubMedPubMedCentralGoogle Scholar
  21. 21.
    Marsden D, Nyhan WL, Sakati NO (1994) Syndrome of hypoparathyroidism with growth hormone deficiency and multiple minor anomalies. Am J Med Genet 52:334–338CrossRefPubMedGoogle Scholar
  22. 22.
    Padidela R, Kelberman D, Press M et al (2009) Mutation in the TBCE gene is associated with hypoparathyroidism-retardation-dysmorphism syndrome featuring pituitary hormone deficiencies and hypoplasia of the anterior pituitary and the corpus callosum. J Clin Endocrinol Metab 94:2686–2691CrossRefPubMedGoogle Scholar
  23. 23.
    Sabry MA, Farag TI, Shaltout AA et al (1999) Kenny-Caffey syndrome: an Arab variant? Clin Genet 55:44–49CrossRefPubMedGoogle Scholar
  24. 24.
    Frech RS, McAlister WH (1968) Medullary stenosis of the tubular bones associated with hypocalcemic convulsions and short stature. Radiology 91:457–461CrossRefGoogle Scholar
  25. 25.
    Majewski F, Rosendahl W, Ranke M et al (1981) The Kenny syndrome, a rare type of growth deficiency with tubular stenosis, transient hypoparathyroidism and anomalies of refraction. Eur J Pediatr 136:21–30CrossRefPubMedGoogle Scholar
  26. 26.
    Larsen JL, Kivlin J, Odell WD (1985) Unusual cause of short stature. Am J Med 78:1025–1032CrossRefPubMedGoogle Scholar
  27. 27.
    Bergada I, Schiffrin A, Abu Srair H et al (1988) Kenny syndrome: description of additional abnormalities and molecular studies. Hum Genet 80:39–42CrossRefPubMedGoogle Scholar
  28. 28.
    Hoffman WH, Kovacs K et al (1998) Kenny-Caffey syndrome and microorchidism. Am J Med Genet 80:107–111CrossRefPubMedGoogle Scholar
  29. 29.
    Unger S, Gorna MW, Le Béchec A et al (2013) FAM111A mutations result in hypoparathyroidism and impaired skeletal development. Am J Hum Genet 92:990–995CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Isojima T, Doi K, Mitsui J et al (2014) A recurrent de novo FAM111A mutation causes Kenny-Caffey syndrome type 2. J Bone Miner Res 29:992–998Google Scholar
  31. 31.
    Boynton JR, Pheasant TR, Johnson BL et al (1979) Ocular findings in Kenny’s syndrome. Arch Ophthalmol 97:896–900CrossRefPubMedGoogle Scholar
  32. 32.
    Verloes A, Garel C, Robertson S et al (2005) Gracile bones, periostal appositions, hypomineralization of the cranial vault, and mental retardation in brothers: milder variant of osteocraniostenosis or new syndrome? Am J Med Genet A 137:199–203CrossRefPubMedGoogle Scholar
  33. 33.
    Nogales E (2000) Structural insight into microtubule function. Annu Rev Biochem 69:277–302CrossRefPubMedGoogle Scholar
  34. 34.
    Leroux MR, Hartl FU (2000) Protein folding: versatility of the cytosolic chaperonin TRiC/CCT. Curr Biol 10:R260–R264CrossRefPubMedGoogle Scholar
  35. 35.
    Tian G, Huang Y, Rommelaere H et al (1996) Pathway leading to correctly folded beta-tubulin. Cell 86:287–296CrossRefPubMedGoogle Scholar
  36. 36.
    Tian G, Lewis SA, Feierbach B et al (1997) Tubulin subunits exist in an activated conformational state generated and maintained by protein cofactors. J Cell Biol 138:821–832CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Bhamidipati A, Lewis SA, Cowan NJ (2000) ADP ribosylation factor-like protein 2 (Arl2) regulates the interaction of tubulin-folding cofactor D with native tubulin. J Cell Biol 149:1087–1096CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Fleming JA, Vega LR, Solomon F (2000) Function of tubulin binding proteins in vivo. Genetics 156:69–80PubMedPubMedCentralGoogle Scholar
  39. 39.
    Radcliffe PA, Toda T (2000) Characterisation of fission yeast alp11 mutants defines three functional domains within tubulin-folding cofactor B. Mol Gen Genet 263:752–760CrossRefPubMedGoogle Scholar
  40. 40.
    Radcliffe PA, Garcia MA, Toda T (2000) The cofactor-dependent pathways for alpha- and beta-tubulins in microtubule biogenesis are functionally different in fission yeast. Genetics 156:93–103PubMedPubMedCentralGoogle Scholar
  41. 41.
    Radcliffe PA, Vardy L, Toda T (2000) A conserved small GTP-binding protein Alp41 is essential for the cofactor-dependent biogenesis of microtubules in fission yeast. FEBS Lett 468:84–88CrossRefPubMedGoogle Scholar
  42. 42.
    Radcliffe PA, Hirata D, Vardy L, Toda T (1999) Functional dissection and hierarchy of tubulin-folding cofactor homologues in fission yeast. Mol Biol Cell 10:2987–3001CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Grishchuk EL, McIntosh JR (1999) Sto1p, a fission yeast protein similar to tubulin folding cofactor E, plays an essential role in mitotic microtubule assembly. J Cell Sci 112:1979–1988PubMedGoogle Scholar
  44. 44.
    Tian G, Bhamidipati A, Cowan NJ, Lewis SA (1999) Tubulin folding cofactors as GTPase-activating proteins. GTP hydrolysis and the assembly of the /ß-tubulin heterodimer. J Biol Chem 274:24054–24058CrossRefPubMedGoogle Scholar
  45. 45.
    Steinborn K, Maulbetsch C, Priester B et al (2002) The Arabidopsis PILZ group genes encode tubulin-folding cofactor orthologs required for cell division but not cell growth. Genes Dev 16:959–971CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Mayer U, Herzog U, Berger F et al (1999) Mutations in the pilz group genes disrupt the microtubule cytoskeleton and uncouple cell cycle progression from cell division in Arabidopsis embryo and endosperm. Eur J Cell Biol 78:100–108CrossRefPubMedGoogle Scholar
  47. 47.
    Bommel H, Xie G, Rossoll W et al (2002) Missense mutation in the tubulin-specific chaperone E (Tbce) gene in the mouse mutant progressive motor neuronopathy, a model of human motoneuron disease. J Cell Biol 159:563–569CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Martin N, Jaubert J, Gounon P et al (2002) A missense mutation in Tbce causes progressive motor neuronopathy in mice. Nat Genet 32:443–447CrossRefPubMedGoogle Scholar
  49. 49.
    Schmalbruch H, Jensen HJ, Bjaerg M et al (1991) A new mouse mutant with progressive motor neuronopathy. J Neuropathol Exp Neurol 50:192–204CrossRefPubMedGoogle Scholar
  50. 50.
    Gunther T, Chen ZF, Kim J et al (2000) Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. Nature 406:199–203CrossRefPubMedGoogle Scholar
  51. 51.
  52. 52.
    Jin S, Pan L, Liu Z et al (2009) Drosophila Tubulin-specific chaperone E functions at neuromuscular synapses and is required for microtubule network formation. Development 136:1571–1581CrossRefPubMedGoogle Scholar
  53. 53.
    Tian G, Huang MC, Parvari R et al (2006) Cryptic out-of-frame translational initiation of TBCE rescues tubulin formation in compound heterozygous HRD. Proc Natl Acad Sci U S A 103:13491–13496CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Parvari R, Hershkovitz E, Grossman N et al (2002) Mutation of TBCE causes hypoparathyroidism-retardation-dysmorphism and autosomal recessive Kenny-Caffey syndrome. Nat Genet 32:448–452CrossRefPubMedGoogle Scholar
  55. 55.
    Parvari R, Diaz GA, Hershkovitz E (2007) Parathyroid development and the role of tubulin chaperone E. Horm Res 67:12–21CrossRefPubMedGoogle Scholar
  56. 56.
    Fine DA, Rozenblatt-Rosen O, Padi M et al (2012) Identification of FAM111A as an SV40 host range restriction and adenovirus helper factor. PLoS Pathog 8(10):e1002949CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
  58. 58.
    Akamatsu S, Takata R, Haiman CA et al (2012) Common variants at 11q12, 10q26 and 3p11.2 are associated with prostate cancer susceptibility in Japanese. Nat Genet 44:426–429CrossRefPubMedGoogle Scholar
  59. 59.
    Tahseen K, Khan S, Uma R et al (1997) Kenny-Caffey syndrome in six Bedouin sibships: autosomal recessive inheritance is confirmed. Am J Med Genet 69:126–132CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2015

Authors and Affiliations

  1. 1.Pediatric Endocrinology Unit, Soroka Medical Center and Faculty of Health SciencesBen Gurion University of the NegevBeer ShevaIsrael
  2. 2.Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health SciencesBen Gurion University of the Negev and National Institute of Biotechnology NegevBeer ShevaIsrael

Personalised recommendations