Hypoparathyroidism, Deafness, and Renal Anomaly Syndrome

  • M. Andrew NesbitEmail author


Heterozygous mutations of GATA3, which encodes a dual zinc-finger transcription factor leading to haploinsufficiency, cause the autosomal dominant hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome. The HDR phenotype is consistent with the expression pattern of GATA3 during embryogenesis. The spectrum of HDR-associated GATA3 mutations comprises complex chromosomal translocations, whole gene loss, missense, nonsense, frameshifting intragenic insertions and deletions, in-frame deletion, and splice site mutations. Analysis of the effects of key missense mutations has revealed DNA- and protein-binding structure-function relationships of the GATA3 molecule. There is variability of the HDR phenotype with no apparent correlation with the underlying genetic defect, suggesting the influence of genetic modifiers or epigenetic modification. Clinical description of an increasing number of HDR syndrome patients is revealing roles for GATA3 in tissues beyond the original triad. Mouse models have demonstrated the important roles of GATA3 in the embryonic development of the parathyroids, inner ear, and kidney and in parathyroid cell proliferation in the adult in response to hypocalcemia.


Parathyroid Kidney Inner ear Transcription factor Haploinsufficiency 


  1. 1.
    Barakat AY, D’Albora JB, Martin MM et al (1977) Familial nephrosis, nerve deafness, and hypoparathyroidism. J Pediatr 91:61–64CrossRefPubMedGoogle Scholar
  2. 2.
    Shaw NJ, Haigh D, Lealmann GT et al (1991) Autosomal recessive hypoparathyroidism with renal insufficiency and developmental delay. Arch Dis Child 66:1191–1194CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Bilous RW, Murty G, Parkinson DB et al (1992) Brief report: autosomal dominant familial hypoparathyroidism, sensorineural deafness, and renal dysplasia. N Engl J Med 327:1069–1074CrossRefPubMedGoogle Scholar
  4. 4.
    Van Esch H, Groenen P, Nesbit MA et al (2000) GATA3 haplo-insufficiency causes human HDR syndrome. Nature 406:419–422CrossRefPubMedGoogle Scholar
  5. 5.
    Elliott D, Thomas GH, Condron CJ et al (1970) C-group chromosome abnormality (? 10p-). Occurrence in a child with multiple malformations. Am J Dis Child 119:72–73CrossRefPubMedGoogle Scholar
  6. 6.
    Lindstrand A, Malmgren H, Verri A et al (2010) Molecular and clinical characterization of patients with overlapping 10p deletions. Am J Med Genet A 152A:1233–1243CrossRefPubMedGoogle Scholar
  7. 7.
    Dasouki M, Jurecic V, Phillips JA 3rd et al (1997) DiGeorge anomaly and chromosome 10p deletions: one or two loci? Am J Med Genet 73:72–75CrossRefPubMedGoogle Scholar
  8. 8.
    Fujimoto S, Yokochi K, Morikawa H et al (1999) Recurrent cerebral infarctions and del(10)(p14p15.1) de novo in HDR (hypoparathyroidism, sensorineural deafness, renal dysplasia) syndrome. Am J Med Genet 86:427–429CrossRefPubMedGoogle Scholar
  9. 9.
    Gottlieb S, Driscoll DA, Punnett HH et al (1998) Characterization of 10p deletions suggests two nonoverlapping regions contribute to the DiGeorge syndrome phenotype. Am J Hum Genet 62:495–498CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Lichtner P, Konig R, Hasegawa T et al (2000) An HDR (hypoparathyroidism, deafness, renal dysplasia) syndrome locus maps distal to the DiGeorge syndrome region on 10p13/14. J Med Genet 37:33–37CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Labastie MC, Catala M, Gregoire JM et al (1995) The GATA-3 gene is expressed during human kidney embryogenesis. Kidney Int 47:1597–1603CrossRefPubMedGoogle Scholar
  12. 12.
    Debacker C, Catala M, Labastie MC (1999) Embryonic expression of the human GATA-3 gene. Mech Dev 85:183–187CrossRefPubMedGoogle Scholar
  13. 13.
    Al-Shibli A, Al AI, Willems PJ (2011) Novel DNA mutation in the GATA3 gene in an Emirati boy with HDR syndrome and hypomagnesemia. Pediatr Nephrol 26:1167–1170CrossRefPubMedGoogle Scholar
  14. 14.
    Ali A, Christie PT, Grigorieva IV et al (2007) Functional characterization of GATA3 mutations causing the hypoparathyroidism-deafness-renal (HDR) dysplasia syndrome: insight into mechanisms of DNA binding by the GATA3 transcription factor. Hum Mol Genet 16:265–275CrossRefPubMedGoogle Scholar
  15. 15.
    Ferraris S, Del Monaco AG, Garelli E et al (2009) HDR syndrome: a novel “de novo” mutation in GATA3 gene. Am J Med Genet A 149A:770–775CrossRefPubMedGoogle Scholar
  16. 16.
    Adachi M, Tachibana K, Asakura Y et al (2006) A novel mutation in the GATA3 gene in a family with HDR syndrome (Hypoparathyroidism, sensorineural Deafness and Renal anomaly syndrome). J Pediatr Endocrinol Metab 19:87–92CrossRefPubMedGoogle Scholar
  17. 17.
    van Looij MA, Meijers-Heijboer H, Beetz R et al (2006) Characteristics of hearing loss in HDR (hypoparathyroidism, sensorineural deafness, renal dysplasia) syndrome. Audiol Neurootol 11:373–379CrossRefPubMedGoogle Scholar
  18. 18.
    Fukami M, Muroya K, Miyake T et al (2011) GATA3 abnormalities in six patients with HDR syndrome. Endocr J 58:117–121CrossRefPubMedGoogle Scholar
  19. 19.
    Hernandez AM, Villamar M, Rosello L et al (2007) Novel mutation in the gene encoding the GATA3 transcription factor in a Spanish familial case of hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome with female genital tract malformations. Am J Med Genet A 143:757–762CrossRefGoogle Scholar
  20. 20.
    Saito T, Fukumoto S, Ito N et al (2009) A novel mutation in the GATA3 gene of a Japanese patient with PTH-deficient hypoparathyroidism. J Bone Miner Metab 27:386–389CrossRefPubMedGoogle Scholar
  21. 21.
    Nakamura A, Fujiwara F, Hasegawa Y et al (2011) Molecular analysis of the GATA3 gene in five Japanese patients with HDR syndrome. Endocr J 58:123–130CrossRefPubMedGoogle Scholar
  22. 22.
    Chiu WY, Chen HW, Chao HW et al (2006) Identification of three novel mutations in the GATA3 gene responsible for familial hypoparathyroidism and deafness in the Chinese population. J Clin Endocrinol Metab 91:4587–4592CrossRefPubMedGoogle Scholar
  23. 23.
    Kobayashi H, Kasahara M, Hino M et al (2006) A novel heterozygous deletion frameshift mutation of GATA3 in a Japanese kindred with the hypoparathyroidism, deafness and renal dysplasia syndrome. J Endocrinol Invest 29:851–853CrossRefPubMedGoogle Scholar
  24. 24.
    Nanba K, Usui T, Nakamura M et al (2013) A novel GATA3 nonsense mutation in a newly diagnosed adult patient of hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome. Endocr Pract 19:e17–e20CrossRefPubMedGoogle Scholar
  25. 25.
    Nesbit MA, Bowl MR, Harding B et al (2004) Characterization of GATA3 mutations in the hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome. J Biol Chem 279:22624–22634CrossRefPubMedGoogle Scholar
  26. 26.
    Mino Y, Kuwahara T, Mannami T et al (2005) Identification of a novel insertion mutation in GATA3 with HDR syndrome. Clin Exp Nephrol 9:58–61CrossRefPubMedGoogle Scholar
  27. 27.
    Gaynor KU, Grigorieva IV, Nesbit MA et al (2009) A missense GATA3 mutation, Thr272Ile, causes the hypoparathyroidism, deafness, and renal dysplasia syndrome. J Clin Endocrinol Metab 94:3897–3904CrossRefPubMedGoogle Scholar
  28. 28.
    Muroya K, Hasegawa T, Ito Y et al (2001) GATA3 abnormalities and the phenotypic spectrum of HDR syndrome. J Med Genet 38:374–380CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Zahirieh A, Nesbit MA, Ali A et al (2005) Functional analysis of a novel GATA3 mutation in a family with the hypoparathyroidism, deafness, and renal dysplasia syndrome. J Clin Endocrinol Metab 90:2445–2450CrossRefPubMedGoogle Scholar
  30. 30.
    Chenouard A, Isidor B, Allain-Launay E et al (2013) Renal phenotypic variability in HDR syndrome: glomerular nephropathy as a novel finding. Eur J Pediatr 172:107–110CrossRefPubMedGoogle Scholar
  31. 31.
    Ohta M, Eguchi-Ishimae M, Ohshima M et al (2011) Novel dominant-negative mutant of GATA3 in HDR syndrome. J Mol Med (Berl) 89:43–50CrossRefGoogle Scholar
  32. 32.
    Moldovan O, Carvalho R, Jorge Z et al (2011) A new case of HDR syndrome with severe female genital tract malformation: comment on “Novel mutation in the gene encoding the GATA3 transcription factor in a Spanish familial case of hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome with female genital tract malformations” by Hernandez et al. Am J Med Genet A 155A:2329–2330CrossRefPubMedGoogle Scholar
  33. 33.
    Sun Y, Xia W, Xing X et al (2009) Germinal mosaicism of GATA3 in a family with HDR syndrome. Am J Med Genet A 149A:776–778CrossRefPubMedGoogle Scholar
  34. 34.
    Muroya K, Mochizuki T, Fukami M et al (2010) Diabetes mellitus in a Japanese girl with HDR syndrome and GATA3 mutation. Endocr J 57:171–174CrossRefPubMedGoogle Scholar
  35. 35.
    Benetti E, Murer L, Bordugo A et al (2009) 10p12.1 deletion: HDR phenotype without DGS2 features. Exp Mol Pathol 86:74–76CrossRefPubMedGoogle Scholar
  36. 36.
    Verri A, Maraschio P, Devriendt K et al (2004) Chromosome 10p deletion in a patient with hypoparathyroidism, severe mental retardation, autism and basal ganglia calcifications. Ann Genet 47:281–287CrossRefPubMedGoogle Scholar
  37. 37.
    Melis D, Genesio R, Boemio P et al (2012) Clinical description of a patient carrying the smallest reported deletion involving 10p14 region. Am J Med Genet A 158A:832–835CrossRefPubMedGoogle Scholar
  38. 38.
    Bernardini L, Sinibaldi L, Capalbo A et al (2009) HDR (Hypoparathyroidism, Deafness, Renal dysplasia) syndrome associated to GATA3 gene duplication. Clin Genet 76:117–119CrossRefPubMedGoogle Scholar
  39. 39.
    Hayashi Y, Suwa T, Inuzuka T (2013) Intracranial calcification in a patient with HDR syndrome and a GATA3 mutation. Intern Med 52:161–162CrossRefPubMedGoogle Scholar
  40. 40.
    Exome Variant Server, NHLBI Exome Sequencing Project (ESP), Seattle, Washington, USA,
  41. 41.
    Kuo CT, Morrisey EE, Anandappa R et al (1997) GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 11:1048–1060CrossRefPubMedGoogle Scholar
  42. 42.
    Pandolfi PP, Roth ME, Karis A et al (1995) Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat Genet 11:40–44CrossRefPubMedGoogle Scholar
  43. 43.
    Simon MC (1995) Gotta have GATA. Nat Genet 11:9–11CrossRefPubMedGoogle Scholar
  44. 44.
    Weiss MJ, Orkin SH (1995) GATA transcription factors: key regulators of hematopoiesis. Exp Hematol 23:99–107PubMedGoogle Scholar
  45. 45.
    Molkentin JD (2000) The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem 275:38949–38952CrossRefPubMedGoogle Scholar
  46. 46.
    Orkin SH (1992) GATA-binding transcription factors in hematopoietic cells. Blood 80:575–581PubMedGoogle Scholar
  47. 47.
    Pedone PV, Omichinski JG, Nony P et al (1997) The N-terminal fingers of chicken GATA-2 and GATA-3 are independent sequence-specific DNA binding domains. EMBO J 16:2874–2882CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Svensson EC, Tufts RL, Polk CE et al (1999) Molecular cloning of FOG-2: a modulator of transcription factor GATA-4 in cardiomyocytes. Proc Natl Acad Sci U S A 96:956–961CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Tevosian SG, Deconinck AE, Cantor AB et al (1999) FOG-2: A novel GATA-family cofactor related to multitype zinc-finger proteins Friend of GATA-1 and U-shaped. Proc Natl Acad Sci U S A 96:950–955CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Chlon TM, Crispino JD (2012) Combinatorial regulation of tissue specification by GATA and FOG factors. Development 139:3905–3916CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Chen Y, Bates DL, Dey R et al (2012) DNA binding by GATA transcription factor suggests mechanisms of DNA looping and long-range gene regulation. Cell Rep 2:1197–1206CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    DeLano WL(2007) MacPyMOL: a PyMOL-based molecular graphics application for MacOS X. DeLano Scientific LLC, Palo Alto, CA, USAGoogle Scholar
  53. 53.
    Yang Z, Gu L, Romeo PH et al (1994) Human GATA-3 trans-activation, DNA-binding, and nuclear localization activities are organized into distinct structural domains. Mol Cell Biol 14:2201–2212PubMedCentralPubMedGoogle Scholar
  54. 54.
    Gaynor KU, Grigorieva IV, Allen MD et al (2013) GATA3 mutations found in breast cancers may be associated with aberrant nuclear localization, reduced transactivation and cell invasiveness. Horm Cancer 4:123–139CrossRefPubMedGoogle Scholar
  55. 55.
    Liew CK, Simpson RJ, Kwan AH et al (2005) Zinc fingers as protein recognition motifs: structural basis for the GATA-1/friend of GATA interaction. Proc Natl Acad Sci U S A 102:583–588CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Spilianakis CG, Lalioti MD, Town T et al (2005) Interchromosomal associations between alternatively expressed loci. Nature 435:637–645CrossRefPubMedGoogle Scholar
  57. 57.
    Vakoc CR, Letting DL, Gheldof N et al (2005) Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. Mol Cell 17:453–462CrossRefPubMedGoogle Scholar
  58. 58.
    Omichinski JG, Clore GM, Schaad O et al (1993) NMR structure of a specific DNA complex of Zn-containing DNA binding domain of GATA-1. Science 261:438–446CrossRefPubMedGoogle Scholar
  59. 59.
    Crossley M, Merika M, Orkin SH (1995) Self-association of the erythroid transcription factor GATA-1 mediated by its zinc finger domains. Mol Cell Biol 15:2448–2456PubMedCentralPubMedGoogle Scholar
  60. 60.
    Yang HY, Evans T (1995) Homotypic interactions of chicken GATA-1 can mediate transcriptional activation. Mol Cell Biol 15:1353–1363PubMedCentralPubMedGoogle Scholar
  61. 61.
    Blokzijl A, ten Dijke P, Ibanez CF (2002) Physical and functional interaction between GATA-3 and Smad3 allows TGF-beta regulation of GATA target genes. Curr Biol 12:35–45CrossRefPubMedGoogle Scholar
  62. 62.
    Merika M, Orkin SH (1995) Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Kruppel family proteins Sp1 and EKLF. Mol Cell Biol 15:2437–2447PubMedCentralPubMedGoogle Scholar
  63. 63.
    Osada H, Grutz G, Axelson H et al (1995) Association of erythroid transcription factors: complexes involving the LIM protein RBTN2 and the zinc-finger protein GATA1. Proc Natl Acad Sci U S A 92:9585–9589CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Nakata Y, Brignier AC, Jin S et al (2010) c-Myb, Menin, GATA-3, and MLL form a dynamic transcription complex that plays a pivotal role in human T helper type 2 cell development. Blood 116:1280–1290CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Hwang SS, Lee S, Lee W et al (2010) GATA-binding protein-3 regulates T helper type 2 cytokine and ifng loci through interaction with metastasis-associated protein 2. Immunology 131:50–58PubMedCentralPubMedGoogle Scholar
  66. 66.
    Bonnard C, Strobl AC, Shboul M et al (2012) Mutations in IRX5 impair craniofacial development and germ cell migration via SDF1. Nat Genet 44:709–713CrossRefPubMedGoogle Scholar
  67. 67.
    Tkocz D, Crawford NT, Buckley NE et al (2012) BRCA1 and GATA3 corepress FOXC1 to inhibit the pathogenesis of basal-like breast cancers. Oncogene 31:3667–3678CrossRefPubMedGoogle Scholar
  68. 68.
    Uchida S, Matsumura Y, Rai T et al (1997) Regulation of aquaporin-2 gene transcription by GATA-3. off. Biochem Biophys Res Commun 232:65–68CrossRefPubMedGoogle Scholar
  69. 69.
    Oxburgh L, Robertson EJ (2002) Dynamic regulation of Smad expression during mesenchyme to epithelium transition in the metanephric kidney. Mech Dev 112:207–211CrossRefPubMedGoogle Scholar
  70. 70.
    Cohen HT, Bossone SA, Zhu G et al (1997) Sp1 is a critical regulator of the Wilms’ tumor-1 gene. J Biol Chem 272:2901–2913CrossRefPubMedGoogle Scholar
  71. 71.
    Alimov AP, Langub MC, Malluche HH et al (2003) Sp3/Sp1 in the parathyroid gland: identification of an Sp1 deoxyribonucleic acid element in the parathyroid hormone promoter. Endocrinology 144:3138–3147CrossRefPubMedGoogle Scholar
  72. 72.
    Lemmens I, Van de Ven WJ, Kas K et al (1997) Identification of the multiple endocrine neoplasia type 1 (MEN1) gene. The European Consortium on MEN1. Hum Mol Genet 6:1177–1183CrossRefPubMedGoogle Scholar
  73. 73.
    Lakshmanan G, Lieuw KH, Grosveld F et al (1998) Partial rescue of GATA-3 by yeast artificial chromosome transgenes. Dev Biol 204:451–463CrossRefPubMedGoogle Scholar
  74. 74.
    Lakshmanan G, Lieuw KH, Lim KC et al (1999) Localization of distant urogenital system-, central nervous system-, and endocardium-specific transcriptional regulatory elements in the GATA-3 locus. Mol Cell Biol 19:1558–1568PubMedCentralPubMedGoogle Scholar
  75. 75.
    Hasegawa SL, Moriguchi T, Rao A et al (2007) Dosage-dependent rescue of definitive nephrogenesis by a distant Gata3 enhancer. Dev Biol 301:568–577CrossRefPubMedCentralPubMedGoogle Scholar
  76. 76.
    Kato Y, Wada N, Numata A et al (2007) Case of hypoparathyroidism, deafness and renal dysplasia (HDR) syndrome associated with nephrocalcinosis and distal renal tubular acidosis. Int J Urol 14:440–442CrossRefPubMedGoogle Scholar
  77. 77.
    Taslipinar A, Kebapcilar L, Kutlu M et al (2008) HDR syndrome (hypoparathyroidism, sensorineural deafness and renal disease) accompanied by renal tubular acidosis and endocrine abnormalities. Intern Med 47:1003–1007CrossRefPubMedGoogle Scholar
  78. 78.
    Lim KC, Lakshmanan G, Crawford SE et al (2000) Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nat Genet 25:209–212CrossRefPubMedGoogle Scholar
  79. 79.
    Grote D, Souabni A, Busslinger M et al (2006) Pax 2/8-regulated Gata 3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development 133:53–61CrossRefPubMedGoogle Scholar
  80. 80.
    Grote D, Boualia SK, Souabni A et al (2008) Gata3 acts downstream of beta-catenin signaling to prevent ectopic metanephric kidney induction. PLoS Genet 4:e1000316CrossRefPubMedCentralPubMedGoogle Scholar
  81. 81.
    Grigorieva IV, Mirczuk S, Gaynor KU et al (2010) Gata3-deficient mice develop parathyroid abnormalities due to dysregulation of the parathyroid-specific transcription factor Gcm2. J Clin Invest 120:2144–2155CrossRefPubMedCentralPubMedGoogle Scholar
  82. 82.
    van der Wees J, van Looij MA, de Ruiter MM et al (2004) Hearing loss following Gata3 haploinsufficiency is caused by cochlear disorder. Neurobiol Dis 16:169–178CrossRefPubMedGoogle Scholar
  83. 83.
    van Looij MA, van der Burg H, van der Giessen RS et al (2005) GATA3 haploinsufficiency causes a rapid deterioration of distortion product otoacoustic emissions (DPOAEs) in mice. Neurobiol Dis 20:890–897CrossRefPubMedGoogle Scholar
  84. 84.
    O’Seaghdha CM, Wu H, Yang Q et al (2013) Meta-analysis of genome-wide association studies identifies six new Loci for serum calcium concentrations. PLoS Genet 9:e1003796CrossRefPubMedCentralPubMedGoogle Scholar
  85. 85.
    Canaff L, Zhou X, Mosesova I et al (2009) Glial cells missing-2 (GCM2) transactivates the calcium-sensing receptor gene: effect of a dominant-negative GCM2 mutant associated with autosomal dominant hypoparathyroidism. Hum Mutat 30:85–92CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2015

Authors and Affiliations

  1. 1.Centre for Biomedical SciencesUniversity of UlsterColeraineNorthern Ireland, UK

Personalised recommendations