Familial Isolated Hypoparathyroidism

  • Geoffrey N. HendyEmail author
  • David E. C. Cole


Familial isolated hypoparathyroidism is the term generally used to describe inherited disorders that manifest almost exclusively as a deficiency of parathyroid hormone. More than a handful of cases, recessive and dominant, arise from mutations of the parathyroid hormone gene (PTH), while there are now more than 20 cases attributable to the developmental gene, glial cells missing 2 (GCM2). Gain-of-function mutations of the calcium-sensing receptor gene (CASR) are responsible for the most common condition, now termed ADH1 and characterized by concomitant hypercalciuria. A few families appear to have hypoparathyroidism due to a mutation of the gene encoding Gα11 protein (GNA11). Finally, X-linked inheritance of FIH is also known. In most cases, a search for a molecular lesion should be considered an integral part of the patient work-up. Still remaining, though, are a good number of families for whom no mutation has been identified. They represent an important future challenge for investigators of this condition.


Isolated hypoparathyroidism Mendelian inheritance Gene mutations 


  1. 1.
    Brandi ML (2011) Genetics of hypoparathyroidism and pseudohypoparathyroidism. J Endocrinol Invest 34(Supp l7):27–34PubMedGoogle Scholar
  2. 2.
    Shoback D (2008) Clinical practice. Hypoparathyroidism. N Engl J Med 359:391–403CrossRefPubMedGoogle Scholar
  3. 3.
    McKusick V (2001) Online Mendelian inheritance in man (OMIM). Johns Hopkins University Press, BaltimoreGoogle Scholar
  4. 4.
    Ahn TG, Antonarakis SE, Kronenberg HM, Igarashi T, Levine MA (1986) Familial isolated hypoparathyroidism: a molecular genetic analysis of 8 families with 23 affected persons. Medicine (Baltimore) 65:73–81CrossRefGoogle Scholar
  5. 5.
    Hendy GN, Bennett HPJ, Gibbs BF et al (1995) Proparathyroid hormone (ProPTH) is preferentially cleaved to parathyroid hormone (PTH) by the prohormone convertase furin: a mass spectrometric analysis. J Biol Chem 270:9517–9525CrossRefPubMedGoogle Scholar
  6. 6.
    Canaff L, Bennett HPJ, Hou Y, Seidah NG, Hendy GN (1999) Proparathyroid hormone processing by the proprotein convertase PC7: comparison with furin and assessment of modulation of parathyroid convertase mRNA levels by calcium and 1,25-dihydroxyvitamin D3. Endocrinology 140:3633–3641PubMedGoogle Scholar
  7. 7.
    Hendy GN, Kronenberg HM, Potts JT Jr, Rich A (1981) Nucleotide sequence of cloned cDNAs encoding human preproparathyroid hormone. Proc Natl Acad Sci U S A 78:7365–7369CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Vasicek TJ, McDevitt BE, Freeman MW et al (1983) Nucleotide sequence of the human parathyroid hormone gene. Proc Natl Acad Sci U S A 80:2127–2131CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Arnold A, Horst SA, Gardella TJ et al (1990) Mutation of the signal peptide-encoding region of the preproparathyroid hormone gene in familial isolated hypoparathyroidism. J Clin Invest 86:1084–1087CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Karaplis AC, Lim SK, Baba H, Arnold A, Kronenberg HM (1995) Inefficient membrane targeting, translocation, and proteolytic processing by signal peptidase of a mutant preproparathyroid hormone protein. J Biol Chem 270:1629–1635CrossRefPubMedGoogle Scholar
  11. 11.
    Datta R, Waheed A, Shah GN, Sly WS (2007) Signal sequence mutation in autosomal dominant form of hypoparathyroidism induces apoptosis that is corrected by a chemical chaperone. Proc Natl Acad Sci U S A 104:19989–19994CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Suprasdngsin C, Wattanachal A, Preeysombat C (2001) Parathyroid hormone gene mutation in patient with hypoparathyroidism. Madhidol University Research Abstracts, 28 Abstract 164Google Scholar
  13. 13.
    Tomar N, Gupta N, Goswami R (2013) Calcium-sensing receptor autoantibodies and idiopathic hypoparathyroidism. J Clin Endocrinol Metab 98:3884–3891CrossRefPubMedGoogle Scholar
  14. 14.
    Freeman MW, Wiren KM, Rapoport A et al (1987) Consequences of amino-terminal deletions of preproparathyroid hormone signal sequence. Mol Endocrinol 1:628–638CrossRefPubMedGoogle Scholar
  15. 15.
    Parkinson DB, Thakker RV (1992) A donor splice site mutation in the parathyroid hormone gene is associated with autosomal recessive hypoparathyroidism. Nat Genet 1:149–152CrossRefPubMedGoogle Scholar
  16. 16.
    Sunthornthepvarakul T, Churesigaew S, Ngowngarmratana S (1999) A novel mutation of the signal peptide of the preproparathyroid hormone gene associated with autosomal recessive familial isolated hypoparathyroidism. J Clin Endocrinol Metab 84:3792–3796PubMedGoogle Scholar
  17. 17.
    Ertl D-A, Stary S, Streubel B, Raimann A, Haeusler G (2012) A novel homozygous mutation in the parathyroid hormone gene (PTH) in a girl with isolated hypoparathyroidism. Bone 51:629–632CrossRefPubMedGoogle Scholar
  18. 18.
    Hendy GN, Canaff L, Cole DEC (2013) The CASR gene: alternative splicing and transcriptional control, and calcium-sensing receptor (CaSR) protein: structure and ligand binding sites. Best Pract Res Clin Endocrinol Metab 27:285–301CrossRefPubMedGoogle Scholar
  19. 19.
    Brown EM (2013) Role of the extracellular calcium-sensing receptor in extracellular calcium homeostasis. Best Pract Res Clin Endocrinol Metab 27:333–343CrossRefPubMedGoogle Scholar
  20. 20.
    Conigrave AD, Ward DT (2013) Calcium-sensing receptor (CaSR); pharmacological properties and signalling pathways. Best Pract Res Clin Endocrinol Metab 27:315–331CrossRefPubMedGoogle Scholar
  21. 21.
    Hendy GN, Guarnieri V, Canaff L (2009) Calcium-sensing receptor and associated diseases. Prog Mol Biol Transl Sci 89C:31–95CrossRefGoogle Scholar
  22. 22.
    Hannan FM, Nesbit MA, Zhang C et al (2012) Identification of 70 calcium-sensing receptor mutations in hyper- and hypo-calcaemic patients: evidence for clustering of extracellular domain mutations at calcium-binding sites. Hum Mol Genet 21:2768–2778CrossRefPubMedGoogle Scholar
  23. 23.
    Hannan FM, Thakker RV (2013) Calcium-sensing receptor (CaSR) mutations and disorders of calcium, electrolyte and water metabolism. Best Pract Res Clin Endocrinol Metab 27:359–371CrossRefPubMedGoogle Scholar
  24. 24.
    Pollak MR, Brown EM, Estep HL et al (1994) Autosomal dominant hypocalcemia caused by a Ca2+-sensing receptor mutation. Nat Genet 8:303–307CrossRefPubMedGoogle Scholar
  25. 25.
    Hebert SC (2003) Bartter syndrome. Curr Opin Nephrol Hypertens 12:527–532CrossRefPubMedGoogle Scholar
  26. 26.
    Nesbit MA, Hannan FM, Howles SA et al (2013) Mutations affecting G-protein subunit α11 in hypercalcemia and hypocalcemia. N Engl J Med 368:2476–2486CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Nesbit MA, Hannan FM, Howles SA et al (2013) Mutations in AP2S1 cause familial hypocalciuric hypercalcemia type 3. Nat Genet 45:93–97CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Hendy GN, Cole DEC (2013) Ruling in a suspect: the role of AP2S1 mutations in familial hypocalciuric hypercalcemia type 3. J Clin Endocrinol Metab 98:4666–4669CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Lambert A-S, Grybek V, Francou B et al (2014) Analysis of AP2S1, a calcium-sensing receptor regulator, in familial and sporadic isolated hypoparathyroidism. J Clin Endocrinol Metab 99(3):E469–E473PubMedGoogle Scholar
  30. 30.
    Mannstadt M, Harris M, Bravenboer B et al (2013) Germline mutations affecting Gα11 in hypoparathyroidism. N Engl J Med 368:2532–2534CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Kifor O, McElduff A, LeBoff MS et al (2004) Activating antibodies in the calcium-sensing receptor in two patients with autoimmune hypoparathyroidism. J Clin Endocrinol Metab 89:548–556CrossRefPubMedGoogle Scholar
  32. 32.
    Goswami R, Brown EM, Kochupillai N et al (2004) Prevalence of calcium sensing receptor autoantibodies in patients with sporadic idiopathic hypoparathyroidism. Eur J Endocrinol 150:9–18CrossRefPubMedGoogle Scholar
  33. 33.
    Brown EM (2009) Anti-parathyroid and anti-calcium-sensing receptor antibodies in autoimmune hypoparathyroidism. Endocrinol Metab Clin North Am 38:437–445CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Kemp EH, Gavalas NG, Krohn KJ et al (2009) Activating autoantibodies against the calcium-sensing receptor detected in two patients with autoimmune polyendocrine syndrome type 1. J Clin Endocrinol Metab 94:4749–4756CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Pearce SHS, Williamson C, Kifor O et al (1996) A familial syndrome of hypocalcemia with hypercalciuria. N Engl J Med 335:1115–1122CrossRefPubMedGoogle Scholar
  36. 36.
    Raue F, Pichl J, Dorr HG et al (2011) Activating mutations in the calcium-sensing receptor: genetic and clinical spectrum in 25 patients with autosomal dominant hypocalcaemia – a German survey. Clin Endocrinol (Oxf) 75:760–765CrossRefGoogle Scholar
  37. 37.
    Yamamoto M, Akatsu T, Nagase T et al (2000) Comparison of hypocalcemic hypercalciuria between patients with idiopathic hypoparathyroidism and those with gain-of-function mutations in the calcium-sensing receptor: is it possible to differentiate the two disorders? J Clin Endocrinol Metab 85:4583–4591CrossRefPubMedGoogle Scholar
  38. 38.
    Lienhardt A, Bai M, Lagarde JP et al (2001) Activating mutations of the calcium-sensing receptor: management of hypocalcemia. J Clin Endocrinol Metab 86:5313–5323CrossRefPubMedGoogle Scholar
  39. 39.
    Canaff L, Hendy GN (2002) Human calcium-sensing receptor gene: vitamin D response elements in promoters P1 and P2 confer transcriptional responsiveness to 1,25-dihydroxyvitamin D. J Biol Chem 277:30337–30350CrossRefPubMedGoogle Scholar
  40. 40.
    Sands JM, Naruse M, Baum M et al (1997) Apical extracellular calcium/polyvalent cation-sensing receptor regulates vasopressin-elicited water permeability in rat kidney inner medullary collecting duct. J Clin Invest 99:1399–1405CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Mittelman SD, Hendy GN, Fefferman RA et al (2006) A hypocalcemic child with a novel activating mutation of the calcium-sensing receptor gene: successful treatment with recombinant human parathyroid hormone. J Clin Endocrinol Metab 91:2474–2479CrossRefPubMedGoogle Scholar
  42. 42.
    Sanda S, Schlingmann KP, Newfield RS (2008) Autosomal dominant hypoparathyroidism with severe hypomagnesemia and hypocalcemia, successfully treated with recombinant PTH and continuous subcutaneous magnesium infusion. J Pediatr Endocrinol Metab 21:385–391CrossRefPubMedGoogle Scholar
  43. 43.
    Theman TA, Collins MT, Dempster DW et al (2009) PTH(1–34) replacement therapy in a child with hypoparathyroidism caused by a sporadic calcium receptor mutation. J Bone Miner Res 24:964–973CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Sato K, Hasegawa Y, Nakae J et al (2002) Hydrochlorothiazide effectively reduces urinary calcium excretion in two Japanese patients with gain-of-function mutations of the calcium-sensing receptor gene. J Clin Endocrinol Metab 87:3068–3073CrossRefPubMedGoogle Scholar
  45. 45.
    Cole DEC, Yun FHJ, Wong BYL et al (2009) Calcium-sensing receptor mutations and denaturing high performance liquid chromatography. J Mol Endocrinol 42:1–9Google Scholar
  46. 46.
    Hendy GN, Minutti C, Canaff L et al (2003) Recurrent familial hypocalcemia due to germline mosaicism for an activating mutation of the calcium-sensing receptor gene. J Clin Endocrinol Metab 88:3674–3681CrossRefPubMedGoogle Scholar
  47. 47.
    Kinoshita Y, Hori M, Taguchi M, Watanabe S, Fukumoto S (2014) Functional activities of mutant calcium-sensing receptors determine clinical presentations in patients with autosomal dominant hypocalcemia. J Clin Endocrinol Metab 99(3):E363–E368CrossRefPubMedGoogle Scholar
  48. 48.
    Pidasheva S, Canaff L, Simonds WF, Marx SJ, Hendy GN (2005) Impaired cotranslational processing of the calcium-sensing receptor due to missense mutations in familial hypocalciuric hypercalcemia. Hum Mol Genet 14:1679–1690CrossRefPubMedGoogle Scholar
  49. 49.
    Pidasheva S, Grant M, Canaff L et al (2006) The calcium-sensing receptor (CASR) dimerizes in the endoplasmic reticulum: biochemical and biophysical characterization of novel CASR mutations causing familial hypocalciuric hypercalcemia. Hum Mol Genet 15:2200–2209CrossRefPubMedGoogle Scholar
  50. 50.
    Hu J, Spiegel AM (2007) Structure and function of the human calcium-sensing receptor: insights from natural and engineered mutations and allosteric modulators. J Cell Mol Med 11:908–922CrossRefPubMedGoogle Scholar
  51. 51.
    Letz S, Rus R, Haag C et al (2010) Novel activating mutations of the calcium-sensing receptor: the calcilytic NPS-2143 mitigates excessive signal transduction of mutant receptors. J Clin Endocrinol Metab 95:E229–E233CrossRefPubMedGoogle Scholar
  52. 52.
    Nakamura A, Hotsubo T, Kobayashi K et al (2013) Loss-of-function and gain-of-function mutations of calcium-sensing receptor: functional analysis and the effect of allosteric modulators NPS R-568 and NPS 2143. J Clin Endocrinol Metab 98:E1692–E1701CrossRefPubMedGoogle Scholar
  53. 53.
    Vargas-Poussou R, Huang C, Hulin P et al (2002) Functional characterization of a calcium-sensing receptor mutation in severe autosomal dominant hypocalcemia with a Bartter-like syndrome. J Am Soc Nephrol 13:2259–2266CrossRefPubMedGoogle Scholar
  54. 54.
    Watanabe S, Fukumoto S, Chang H et al (2002) Association between activating mutations of calcium-sensing receptor and Bartter’s syndrome. Lancet 360:692–694CrossRefPubMedGoogle Scholar
  55. 55.
    Vezzoli G, Arcdiacono T, Paloschi V et al (2006) Autosomal dominant hypocalcemia with mild type 5 Bartter syndrome. J Am Soc Nephrol 19:525–528Google Scholar
  56. 56.
    Mizuno N, Itoh H (2009) Functions and regulatory mechanisms of Gq-signaling pathways. Neurosignals 17:42–54CrossRefPubMedGoogle Scholar
  57. 57.
    Kim J, Jones BW, Zock C et al (1998) Isolation and characterization of mammalian homologs of the Drosophila gene glial cells missing. Proc Natl Acad Sci U S A 95:12364–12369CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Kanemura Y, Hiraga S, Arita N, Ohnishi T, Izumoto S, Mori K, Matsumura H, Yamasaki M, Fushiki S, Yoshimine T (1999) Isolation and expression analysis of a novel human homologue of the Drosophila glial cells missing (gcm) gene. FEBS Lett 442:151–156CrossRefPubMedGoogle Scholar
  59. 59.
    Kammerer M, Pirola B, Giglio A, Giangrande A (1999) GCMB, a second human homolog of the fly glide/gcm gene. Cytogenet Cell Genet 84:43–47CrossRefPubMedGoogle Scholar
  60. 60.
    Gunther T, Chen ZF, Kim J, Priemel M, Rueger JM, Amling M, Moseley JM, Martin TJ, Anderson DJ, Karsenty G (2000) Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. Nature 406:199–203CrossRefPubMedGoogle Scholar
  61. 61.
    Maret A, Bourdeau I, Ding C et al (2004) Expression of GCMB by intrathymic parathyroid hormone-secreting adenomas indicates their parathyroid cell origin. J Clin Endocrinol Metab 89:8–12CrossRefPubMedGoogle Scholar
  62. 62.
    Okabe M, Graham A (2004) The origin of the parathyroid gland. Proc Natl Acad Sci U S A 101:17716–17719CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Liu Z, Yu S, Manley NR (2007) GCM2 is required for the differentiation and survival of parathyroid precursor cells in the parathyroid/thymus primordia. Dev Biol 305:333–346CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Ding C, Buckingham B, Levine MA (2001) Familial isolated hypoparathyroidism caused by a mutation in the gene for the transcription factor GCMB. J Clin Invest 108:1215–1220CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Baumber L, Tufarelli C, Patel S et al (2005) Identification of a novel mutation disrupting the DNA binding activity of GCM2 in autosomal recessive familial isolated hypoparathyroidism. J Med Genet 42:443–448CrossRefPubMedCentralPubMedGoogle Scholar
  66. 66.
    Thomee C, Schubert SW, Parma J et al (2005) GCMB mutation in familial isolated hypoparathyroidism with residual secretion of parathyroid hormone. J Clin Endocrinol Metab 90:2487–2492CrossRefPubMedGoogle Scholar
  67. 67.
    Canaff L, Tham EB, Human D, Chanoine JP, Hendy GN (2007) Homozygous glial cell missing-2 (GCM-2) gene mutation in familial isolated hypoparathyroidism. Bone 40S2:Abs.180Th. p S285Google Scholar
  68. 68.
    Bowl MR, Mirczuk SM, Grigorieva IV et al (2010) Identification and characterization of novel parathyroid-specific transcription factor Glial Cells Missing Homolog B (GCMB) mutations in eight families with autosomal recessive hypoparathyroidism. Hum Mol Genet 19:2028–2038CrossRefPubMedGoogle Scholar
  69. 69.
    Tomar N, Bora H, Singh R et al (2010) Presence and significance of a R110W mutation in the DNA-binding domain of GCM2 gene in patients with isolated hypoparathyroidism and their family members. Eur J Endocrinol 162:407–421CrossRefPubMedGoogle Scholar
  70. 70.
    Doyle D, Kirwin SM, Sol-Church K, Levine MA (2012) A novel mutation in the GCM2 gene causing severe congenital isolated hypoparathyroidism. J Pediatr Endocrinol Metab 25:741–746CrossRefPubMedCentralPubMedGoogle Scholar
  71. 71.
    Mannstadt M, Bertrand G, Muresan M et al (2008) Dominant-negative GCMB mutations cause an autosomal dominant form of hypoparathyroidism. J Clin Endocrinol Metab 93:3568–3576CrossRefPubMedCentralPubMedGoogle Scholar
  72. 72.
    Canaff L, Zhou X, Mosesova I, Cole DEC, Hendy GN (2009) Glial cells missing-2 (GCM2) transactivates the calcium-sensing receptor gene: effect of a dominant-negative GCM2 mutant associated with autosomal dominant hypoparathyroidism. Hum Mutat 30:85–92CrossRefPubMedGoogle Scholar
  73. 73.
    Mirczuk SM, Bowl MR, Nesbit MA et al (2010) A missense glial cells missing homolog B (GCMB) mutation, Asn502His, causes autosomal dominant hypoparathyroidism. J Clin Endocrinol Metab 95:3512–3516CrossRefPubMedGoogle Scholar
  74. 74.
    Yi H-S, Eom YS, Park IB et al (2012) Identification and characterization of C106R, a novel mutation in the DNA-binding domain of GCMB, in a family with autosomal-dominant hypoparathyroidism. Clin Endocrinol (Oxf) 76:625–633CrossRefGoogle Scholar
  75. 75.
    Maret A, Ding C, Kornfield SL, Levine MA (2008) Analysis of the GCM2 gene in isolated hypoparathyroidism: a molecular and biochemical study. J Clin Endocrinol Metab 93:1426–1432CrossRefPubMedGoogle Scholar
  76. 76.
    Mizobuchi M, Ritter CS, Krits I et al (2009) Calcium-sensing receptor expression is regulated by glial cells missing-2 in human parathyroid cells. J Bone Miner Res 24:1173–1179CrossRefPubMedCentralPubMedGoogle Scholar
  77. 77.
    Canaff L, Zhou X, Cole DEC, Hendy GN (2008) Glial cells missing-2 (GCM2), the regulator of parathyroid cell fate, transactivates the calcium-sensing receptor gene (CASR): identification of GCM-response elements in CASR promoters P1 and P2. J Bone Miner Res 23S1:Abs. M187. p S429Google Scholar
  78. 78.
    Kamitani-Kawamoto A, Hamada M, Moriguchi T et al (2011) MafB interacts with Gcm2 and regulates parathyroid development. J Bone Miner Res 26:2463–2472CrossRefPubMedGoogle Scholar
  79. 79.
    Grigorieva IV, Mirczuk S, Gaynor KU et al (2010) Gata3-deficient mice develop parathyroid abnormalities due to dysregulation of the parathyroid-specific transcription factor Gcm2. J Clin Invest 120:2144–2155CrossRefPubMedCentralPubMedGoogle Scholar
  80. 80.
    Grigorieva IV, Thakker RV (2011) Transcription factors in parathyroid development: lessons from hypoparathyroid disorders. Ann N Y Acad Sci 1237:24–38CrossRefPubMedGoogle Scholar
  81. 81.
    Bowl MR, Nesbit MA, Harding B et al (2005) An interstitial deletion-insertion involving chromosomes 2p25.3 and Xq27.1, near SOX3, causes X-linked recessive hypoparathyroidism. J Clin Invest 115:2822–2831CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2015

Authors and Affiliations

  1. 1.Departments of Medicine, Physiology, and Human Genetics (G.N.H.)McGill UniversityMontrealCanada
  2. 2.Calcium Research Laboratory and Hormones and Cancer Research UnitRoyal Victoria HospitalMontrealCanada
  3. 3.Departments of Laboratory Medicine and Pathobiology, Medicine, and Genetics (D.E.C.C.), Sunnybrook Health Sciences CentreUniversity of TorontoTorontoCanada

Personalised recommendations