Epidemiology of Hypoparathyroidism

  • Bart L. ClarkeEmail author


Hypoparathyroidism is a rare disorder that may be acquired or inherited. Postsurgical hypoparathyroidism is responsible for the majority of acquired hypoparathyroidism. Transient postsurgical hypoparathyroidism is estimated to occur in 25.4–83 % in neck surgery patients, whereas permanent postsurgical hypoparathyroidism occurs in only 0.12–4.6 % of cases. The prevalence estimate for all forms of hypoparathyroidism in the USA was reported as 37 per 100,000 person-years, whereas the prevalence of postsurgical hypoparathyroidism in Denmark was reported as 22 per 100,000 person-years. The presentation of hypoparathyroidism is quite variable, with most patients mildly to moderately affected, and some severely affected. Severely affected patients may have sudden death due to complications of their hypocalcemia. The yearly cost of medical care for patients with hypoparathyroidism in Olmsted County, Minnesota, was estimated to be about three times that of healthy patients. Patients with hypoparathyroidism suffer from various morbidities ranging from symptoms related to frequent hypocalcemia, hypercalcemia, and hypercalciuria due to overtreatment, as well as alterations in well-being and mood, basal ganglia calcifications, cataracts, and skeletal disease.


Hypoparathyroidism Epidemiology Prevalence Incidence Mortality 


  1. 1.
    Powers J, Joy K, Ruscio A, Lagast H (2013) Prevalence and incidence of hypoparathyroidism in the USA using a large claims database. J Bone Miner Res 28:2570–2576PubMedGoogle Scholar
  2. 2.
    Underbjerg L, Sikjaer T, Mosekilde L, Rejnmark L (2013) Cardiovascular and renal complications to postsurgical hypoparathyroidism: a Danish nationwide controlled historic follow-up study. J Bone Miner Res 28:2277–2285PubMedGoogle Scholar
  3. 3.
    Clarke BL, Leibson C, Emerson J, Ransom JE, Lagast H (2011) Co-morbid-medical conditions associated with prevalent hypoparathyroidism: a population-based study. J Bone Miner Res 26:S182 (Abstract SA1070)Google Scholar
  4. 4.
    Cusano NE, Maalouf NM, Wang PY, Zhang C, Cremers SC, Haney EM, Bauer DC, Orwoll ES, Bilezikian JP (2013) Normocalcemic hyperparathyroidism and hypoparathyroidism in two community-based non-referral populations. J Clin Endocrinol Metab 98:2734–2741PubMedPubMedCentralGoogle Scholar
  5. 5.
    Shoback D (2008) Clinical practice. Hypoparathyroidism. N Engl J Med 359:391–400PubMedGoogle Scholar
  6. 6.
    Pattou F, Combemale F, Fabre S et al (1998) Hypocalcemia following thyroid surgery: incidence and prediction of outcome. World J Surg 22:718–724PubMedGoogle Scholar
  7. 7.
    Thomusch O, Machens A, Sekulla C, Ukkat J, Brauckhoff M, Dralle H (2003) The impact of surgical technique on postoperative hypoparathyroidism in bilateral thyroid surgery: a multivariate analysis of 5846 consecutive patients. Surgery 133:180–185PubMedGoogle Scholar
  8. 8.
    Paek SH, Lee YM, Min SY, Kim SW, Chung KW, Youn YK (2013) Risk factors of hypoparathyroidism following total thyroidectomy for thyroid cancer. World J Surg 37:94–101PubMedGoogle Scholar
  9. 9.
    Asari R, Passler C, Kaczirek K, Scheuba C, Niederle B (2008) Hypoparathyroidism after total thyroidectomy: a prospective study. Arch Surg 143:132–137PubMedGoogle Scholar
  10. 10.
    Page C, Strunski V (2007) Parathyroid risk in total thyroidectomy for bilateral, benign, multinodular goitre: report of 351 surgical cases. J Laryngol Otol 121:237–241PubMedGoogle Scholar
  11. 11.
    Pereira JA, Jimeno J, Miquel J, Iglesias M, Munné A, Sancho JJ, Sitges-Serra A (2005) Nodal yield, morbidity, and recurrence after central neck dissection for papillary thyroid carcinoma. Surgery 138:1095–1101PubMedGoogle Scholar
  12. 12.
    Wingert DJ, Friesen SR, Iliopoulos JI, Pierce GE, Thomas JH, Hermreck AS (1986) Post-thyroidectomy hypocalcemia. Incidence and risk factors. Am J Surg 152:606–610PubMedGoogle Scholar
  13. 13.
    Bilezikian JP, Khan A, Potts JT Jr, Brandi ML, Clarke BL, Shoback D, Juppner H, D’Amour P, Fox J, Rejnmark L, Mosekilde L, Rubin MR, Dempster D, Gafni R, Collins MT, Sliney J, Sanders J (2011) Hypoparathyroidism in the adult: epidemiology, diagnosis, pathophysiology, target-organ involvement, treatment, and challenges for future research. J Bone Miner Res 26:2317–2337PubMedPubMedCentralGoogle Scholar
  14. 14.
    Toniato A, Boschin IM, Piotto A, Pelizzo M, Sartori P (2008) Complications in thyroid surgery for carcinoma: one institution’s surgical experience. World J Surg 32:572–575PubMedGoogle Scholar
  15. 15.
    Lindblom P, Westerdahl J, Bergenfelz A (2002) Low parathyroid hormone levels after thyroid surgery: a feasible predictor of hypocalcemia. Surgery 131:515–520PubMedGoogle Scholar
  16. 16.
    Shaha AR, Burnett C, Jaffe BM (1991) Parathyroid autotransplantation during thyroid surgery. J Surg Oncol 46:21–24PubMedGoogle Scholar
  17. 17.
    Palazzo FF, Sywak MS, Sidhu SB, Barraclough BH, Delbridge LW (2005) Parathyroid autotransplantation during total thyroidectomy-does the number of glands transplanted affect outcome? World J Surg 29:629–631PubMedGoogle Scholar
  18. 18.
    Zedenius J, Wadstrom C, Delbridge L (1999) Routine autotransplantation of at least one parathyroid gland during total thyroidectomy may reduce permanent hypoparathyroidism to zero. Aust N Z J Surg 69:794–797PubMedGoogle Scholar
  19. 19.
    Goswami R, Goel S, Tomar N, Gupta N, Lumb V, Sharma YD (2010) Prevalence of clinical remission in patients with sporadic idiopathic hypoparathyroidism. Clin Endocrinol (Oxf) 72:328–333Google Scholar
  20. 20.
    Ahonen P, Myllarniemi S, Sipila I, Perheentupa J (1990) Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med 322:1829–1836PubMedGoogle Scholar
  21. 21.
    Bjorses P, Halonen M, Palvimo JJ, Kolmer M, Aaltonen J, Ellonen P, Perheentupa J, Ulmanen I, Peltonen L (2000) Mutations in the AIRE gene: effects on subcellular location and transactivation function of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy protein. Am J Hum Genet 66:378–392PubMedPubMedCentralGoogle Scholar
  22. 22.
    Su MA, Giang K, Zumer K, Jiang H, Oven I, Rinn JL, Devoss JJ, Johannes KP, Lu W, Gardner J, Chang A, Bubulya P, Chang HY, Peterlin BM, Anderson MS (2008) Mechanisms of autoimmunity syndrome in mice caused by dominant mutation in Aire. J Clin Invest 358:1018–1028Google Scholar
  23. 23.
    Lankisch TO, Jaeckel E, Strassburg CP (2009) The autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy or autoimmune polyglandular syndrome type 1. Semin Liver Dis 29:307–314PubMedGoogle Scholar
  24. 24.
    Alimohammadi M, Bjorklund P, Hallgren A, Pöntynen N, Szinnai G, Shikama N, Keller MP, Ekwall O, Kinkel SA, Husebye ES, Gustafsson J, Rorsman F, Peltonen L, Betterle C, Perheentupa J, Akerström G, Westin G, Scott HS, Holländer GA, Kämpe O (2008) Autoimmune polyendocrine syndrome type 1 and NALP5, a parathyroid autoantigen. N Engl J Med 358:1018–1028PubMedGoogle Scholar
  25. 25.
    Hendy GN, Guarnieri V, Canaff L (2009) Calcium-sensing receptor and associated diseases. Prog Mol Biol Transl Sci 89:31–95PubMedGoogle Scholar
  26. 26.
    Gavalas NG, Kemp EH, Krohn KJE, Brown EM, Watson PF, Weetman AP (2007) The calcium-sensing receptor is a target of autoantibodies in patients with autoimmune polyendocrine syndrome type 1. J Clin Endocrinol Metab 92:2107–2114PubMedGoogle Scholar
  27. 27.
    Husebye ES, Perhentupa J, Rautemaa R, Kampe O (2009) Clinical manifestations and management of patients with autoimmune polyendocrine syndrome type 1. J Intern Med 265:514–529PubMedGoogle Scholar
  28. 28.
    Kemp EH, Gavalas NG, Krohn KJE, Brown EM, Watson PF, Weetman AP (2009) Activating autoantibodies against the calcium-sensing receptor detected in two patients with autoimmune polyendocrine syndrome type 1. J Clin Endocrinol Metab 94:4749–4756PubMedPubMedCentralGoogle Scholar
  29. 29.
    Tomar N, Gupta N, Goswami R (2013) Calcium-sensing receptor autoantibodies and idiopathic hypoparathyroidism. J Clin Endocrinol Metab 98:3884–3891PubMedGoogle Scholar
  30. 30.
    Brauner-Osborne H, Wellendorph P, Jensen AA (2007) Structure, pharmacology and therapeutic prospects of family C G-protein coupled receptors. Curr Drug Targets 8:169–184PubMedGoogle Scholar
  31. 31.
    Hauache OM (2001) Extracellular calcium-sensing receptor: structural and functional features and association with diseases. Braz J Med Biol Res 34:577–584PubMedGoogle Scholar
  32. 32.
    Brown EM, MacLeod RJ (2001) Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 81:239–297PubMedGoogle Scholar
  33. 33.
    Blizzard RM, Chee D, Davis W (1966) The incidence of parathyroid and other antibodies in the sera of patients with idiopathic hypoparathyroidism. Clin Exp Immunol 1:119–128PubMedPubMedCentralGoogle Scholar
  34. 34.
    Li Y, Song YH, Rais N, Connor E, Schatz D, Muir A, Maclaren N (1996) Autoantibodies to the extracellular domain of the calcium sensing receptor in patients with acquired hypoparathyroidism. J Clin Invest 97:910–914PubMedPubMedCentralGoogle Scholar
  35. 35.
    Brown EM (2009) Anti-parathyroid and anti-calcium sensing receptor antibodies in autoimmune hypoparathyroidism. Endocrinol Metab Clin North Am 38:437–445PubMedPubMedCentralGoogle Scholar
  36. 36.
    Kifor O, McElduff A, LeBoff MS, Moore FD Jr, Butters R, Gao P, Cantor TL, Kifor I, Brown EM (2004) Activating antibodies to the calcium-sensing receptor in two patients with autoimmune hypoparathyroidism. J Clin Endocrinol Metab 89:548–556PubMedGoogle Scholar
  37. 37.
    Toumba M, Sergis A, Kanaris C, Skordis N (2007) Endocrine complications in patients with thalassemia major. Pediatr Endocrinol Rev 5:642–648PubMedGoogle Scholar
  38. 38.
    Vogiatzi MG, Macklin EA, Trachtenberg FL, Fung EB, Cheung AM, Vichinsky E, Olivieri N, Kirby M, Kwiatkowski JL, Cunningham M, Holm IA, Fleisher M, Grady RW, Peterson CM, Giardina PJ, Thalassemia Clinical Research Network (2009) Differences in the prevalence of growth, endocrine and vitamin D abnormalities among the various thalassaemia syndromes in North America. Br J Haematol 146:546–556PubMedPubMedCentralGoogle Scholar
  39. 39.
    Belhoul KM, Bakir ML, Kadhim AM, Dewedar HE, Eldin MS, Alkhaja FA (2013) Prevalence of iron overload complications among patients with b-thalassemia major treated at Dubai Thalassemia Centre. Ann Saudi Med 33:18–21PubMedGoogle Scholar
  40. 40.
    Habeb AM, Al-Hawsawi ZM, Morsy MM, Al-Harbi AM, Osilan AS, Al-Magamsi MS, Zolaly MA (2013) Endocrinopathies in beta-thalassemia major. Prevalence, risk factors, and age at diagnosis in Northwest Saudi Arabia. Saudi Med J 34:67–73PubMedGoogle Scholar
  41. 41.
    Carpenter TO, Carnes DL Jr, Anast CS (1983) Hypoparathyroidism in Wilson’s disease. N Engl J Med 309:873–877PubMedGoogle Scholar
  42. 42.
    Tong GM, Rude RK (2005) Magnesium deficiency in critical illness. J Intensive Care Med 20:3–17PubMedGoogle Scholar
  43. 43.
    Milman S, Epstein EJ (2011) Proton pump inhibitor-induced hypocalcemic seizure in a patient with hypoparathyroidism. Endocr Pract 17:104–107PubMedGoogle Scholar
  44. 44.
    Cholst IN, Steinberg SF, Tropper PJ, Fox HE, Segre GV, Bilezikian JP (1984) The influence of hypermagnesemia on serum calcium and parathyroid hormone levels in human subjects. N Engl J Med 310:1221–1225PubMedGoogle Scholar
  45. 45.
    Pauwels EK, Smit JW, Slats A, Bourguignon M, Overbeek F (2000) Health effects of therapeutic use of 131I in hyperthyroidism. Q J Nucl Med 44:333–339PubMedGoogle Scholar
  46. 46.
    Goddard CJ (1990) Symptomatic hypocalcaemia associated with metastatic invasion of the parathyroid glands. Br J Hosp Med 43:72PubMedGoogle Scholar
  47. 47.
    Thakker RV (1996) Molecular basis of PTH underexpression. In: Principles of bone biology. Academic, New York, pp 837–851Google Scholar
  48. 48.
    Bilezikian JP, Thakker RV (1998) Hypoparathyroidism. Curr Opin Endocrinol Diabetes 4:427–432Google Scholar
  49. 49.
    Mirczuk SM, Bowl MR, Nesbit MA, Cranston T, Fratter C, Allgrove J, Brain C, Thakker RV (2010) A missense glial cells missing homolog B (GCMB) mutation, Asn502His, causes autosomal dominant hypoparathyroidism. J Clin Endocrinol Metab 95:3512–3516PubMedGoogle Scholar
  50. 50.
    Thakker RV (2001) Genetic developments in hypoparathyroidism. Lancet 357:974–976PubMedGoogle Scholar
  51. 51.
    Thakker RV, Juppner H (2001) Genetic disorders of calcium homeostasis caused by abnormal regulation of parathyroid hormone secretion or responsiveness. In: DeGroot LJ, Jameson JL (eds) Endocrinology, 4th edn. WB Saunders Company, Philadelphia, pp 1062–1074Google Scholar
  52. 52.
    Pollak MR, Brown EM, Estep HL, McLaine PN, Kifor O, Park J, Hebert SC, Seidman CE, Seidman JG (1994) Autosomal dominant hypocalcemia caused by a calcium-sensing receptor mutation. Nat Genet 8:303–307PubMedGoogle Scholar
  53. 53.
    Nesbit MA, Hannan FM, Howles SA, Babinsky VN, Head RA, Cranston T, Rust N, Hobbs MR, Heath H 3rd, Thakker RV (2013) Mutations affecting G-protein subunit α11 in hypercalcemia and hypocalcemia. N Engl J Med 368:2476–2486PubMedPubMedCentralGoogle Scholar
  54. 54.
    Rogers A, Nesbit MA, Hannan FM, Howles SA, Gorvin CM, Cranston T, Allgrove J, Bevan JS, Bano G, Brain C, Datta V, Grossman AB, Hodgson SV, Izatt L, Millar-Jones L, Pearce SH, Robertson L, Selby PL, Shine B, Snape K, Warner J, Thakker RV (2014) Mutational analysis of the adaptor protein 2 sigma subunit (AP2S1) gene: search for autosomal dominant hypocalcemia type 3 (ADH3). J Clin Endocrinol Metab 99:E1300–E1305PubMedGoogle Scholar
  55. 55.
    Sunthornthepvarakul T, Churesigaew S, Ngowngarmratana S (1999) A novel mutation of the signal peptide of the pre-pro-parathyroid hormone gene associated with autosomal recessive familial isolated hypoparathyroidism. J Clin Endocrinol Metab 84:3792–3796PubMedGoogle Scholar
  56. 56.
    Parkinson DB, Thakker RV (1992) A donor splice site mutation in the parathyroid hormone gene is associated with autosomal recessive hypoparathyroidism. Nat Genet 1:149–153PubMedGoogle Scholar
  57. 57.
    Arnold A, Horst SA, Gardella TJ, Baba H, Levine MA, Kronenberg HM (1990) Mutations in the signal peptide encoding region of preproparathyroid hormone gene in isolated hypoparathyroidism. J Clin Invest 86:0184–1087Google Scholar
  58. 58.
    Datta R, Waheed A, Shah GN, Sly WS (2007) Signal sequence mutation in autosomal dominant form of hypoparathyroidism induces apoptosis that is corrected by a chemical chaperone. Proc Natl Acad Sci U S A 104:19989–19994PubMedPubMedCentralGoogle Scholar
  59. 59.
    Gunther T, Chen ZF, Kim J, Priemel M, Rueger JM, Amling M, Moseley JM, Martin TJ, Anderson DJ, Karsenty G (2000) Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. Nature 406:199–203PubMedGoogle Scholar
  60. 60.
    Whyte MP, Weldon VV (1981) Idiopathic hypoparathyroidism presenting with seizures during infancy: X-linked recessive inheritance in a large Missouri kindred. J Pediatr 99:608–611PubMedGoogle Scholar
  61. 61.
    Mumm S, Whyte MP, Thakker RV, Buetow KH, Schlessinger D (1997) mtDNA analysis shows common ancestry in two kindreds with X-linked recessive hypoparathyroidism and reveals a heteroplasmic silent mutation. Am J Hum Genet 60:153–159PubMedPubMedCentralGoogle Scholar
  62. 62.
    Thakker RV, Davies KE, Whyte MP, Wooding C, Riordan JL (1990) Mapping the gene causing X-linked recessive idiopathic hypoparathyroidism to Xq26-Xq27 by linkage studies. J Clin Invest 86:40–45PubMedPubMedCentralGoogle Scholar
  63. 63.
    Bowl MR, Nesbit MA, Harding B, Levy E, Jefferson A, Volpi E, Rizzoti K, Lovell-Badge R, Schlessinger D, Whyte MP, Thakker RV (2005) An interstitial deletion-insertion involving chromosome 2p25.3 and Xq27.1, near SOX3, causes X-linked recessive hypoparathyroidism. J Clin Invest 115:2822–2833PubMedPubMedCentralGoogle Scholar
  64. 64.
    Kobrynski LJ, Sullivan KE (2007) Velocardiofacial syndrome, DiGeorge syndrome: the chromosome 22q11.2 deletion syndrome. Lancet 370:1443–1452PubMedGoogle Scholar
  65. 65.
    Parvari R, Diaz GA, Hershkovitz E (2007) Parathyroid development and the role of tubulin chaperone E. Horm Res 358:12–21Google Scholar
  66. 66.
    Sanjad SA, Sakati NA, Abu-Osba YK, Kaddoura R, Nilner RDG (1991) A new syndrome of congenital hypoparathyroidism, severe growth failure, and dysmorphic features. Arch Dis Child 66:193–196PubMedPubMedCentralGoogle Scholar
  67. 67.
    Ali A, Christie PT, Grigorieva IV et al (2007) Functional characterization of GATA3 mutations causing the hypoparathyroidism-deafness-renal (HDR) dysplasia syndrome: insight into mechanisms of DNA binding by the GATA3 transcription factor. Hum Mol Genet 16:265–275PubMedGoogle Scholar
  68. 68.
    Bilous RW, Murty G, Parkinson DB et al (1992) Brief report: autosomal dominant familial hypoparathyroidism, sensorineural deafness and renal dysplasia. N Engl J Med 327:1069–1074PubMedGoogle Scholar
  69. 69.
    Thakker RV (2004) Genetics of endocrine and metabolic disorders: parathyroid. Rev Endocr Metab Disord 5:37–51PubMedGoogle Scholar
  70. 70.
    Leibson C, Clarke BL, Ransom JE, Lagast H (2011) Medical care costs for persons with and without prevalent hypoparathyroidism: a population-based study. J Bone Miner Res 26:S183 (Abstract SA1071)Google Scholar
  71. 71.
    Maeda SS, Fortes EM, Oliveira UM, Borba VC, Lazaretti-Castro M (2006) Hypoparathyroidism and pseudohypoparathyroidism. Arq Bras Endocrinol Metabol 50:664–673PubMedGoogle Scholar
  72. 72.
    Noordzij M, Voormolen NMC, Boeschoten EW, Dekker FW, Bos WJ, Krediet RT, Korevaar JC, NECOSAD Study Group (2009) Disordered mineral metabolism is not a risk factor for loss of residual renal function in dialysis patients. Nephrol Dial Transplant 24:1580–1587PubMedGoogle Scholar
  73. 73.
    Arlt W, Fremerey C, Callies F, Reincke M, Schneider P, Timmermann W, Allolio B (2002) Well-being, mood and calcium homeostasis in patients with hypoparathyroidism receiving standard treatment with calcium and vitamin D. Eur J Endocrinol 146:215–222PubMedGoogle Scholar
  74. 74.
    Mitchell DM, Regan S, Cooley MR, Lauter KB, Vrla MC, Becker CB, Burnett-Bowie SM, Mannstadt M (2012) Long-term follow-up of patients with hypoparathyroidism. J Clin Endocrinol Metab 97:4507–4514PubMedPubMedCentralGoogle Scholar
  75. 75.
    Santos F, Chan JC (1986) Idiopathic hypoparathyroidism: a case study on the interactions between exogenous parathyroid hormone infusion and 1,25-dihydroxyvitamin D. Pediatrics 78:1139–1141PubMedGoogle Scholar
  76. 76.
    Weber G, Cazzuffi MA, Frisone F, de Angelis M, Pasolini D, Tomaselli V, Chiumello G (1988) Nephrocalcinosis in children and adolescents: sonographic evaluation during long-term treatment with1,25-dihydroxycholecalciferol. Child Nephrol Urol 9:273–276PubMedGoogle Scholar
  77. 77.
    Rubin MR, Dempster DW, Zhou H, Shane E, Nickolas T, Sliney J Jr, Silverberg SJ, Bilezikian JP (2008) Dynamic and structural properties of the skeleton in hypoparathyroidism. J Bone Miner Res 23:2018–2024PubMedPubMedCentralGoogle Scholar
  78. 78.
    Winer KK, Yanovski JA, Cutler GB Jr (1996) Synthetic human parathyroid hormone 1-34 vs calcitriol and calcium in the treatment of hypoparathyroidism. JAMA 276:631–636PubMedGoogle Scholar
  79. 79.
    Winer KK, Yanovski JA, Sarani B, Cutler GB Jr (1998) A randomized, cross-over trial of once-daily versus twice-daily parathyroid hormone 1-34 in treatment of hypoparathyroidism. J Clin Endocrinol Metab 83:3480–3486PubMedGoogle Scholar
  80. 80.
    Winer KK, Ko CW, Reynolds JC, Dowdy K, Keil M, Peterson D, Gerber LH, McGarvey C, Cutler GB Jr (2003) Long-term treatment of hypoparathyroidism: a randomized controlled study comparing parathyroid hormone (1–34) versus calcitriol and calcium. J Clin Endocrinol Metab 88:4214–4220PubMedGoogle Scholar
  81. 81.
    Aggarwal S, Kailash S, Sagar R, Tripathi M, Sreenivas V, Sharma R, Gupta N, Goswami R (2013) Neuropsychological dysfunction in idiopathic hypoparathyroidism and its relationship with intracranial calcification and serum total calcium. Eur J Endocrinol 168:895–903PubMedGoogle Scholar
  82. 82.
    Hadker N, Egan J, Sanders J, Lagast H, Clarke BL (2014) Understanding the burden of illness associated with hypoparathyroidism reported among patients in the PARADOX study. Endocr Pract 20:671–679PubMedGoogle Scholar
  83. 83.
    Eaton LM, Camp JD, Love JG (1939) Symmetric cerebral calcification, particularly of the basal ganglia, demonstrable roentgenographically. Arch Neurol Psychiatry 41:921–942Google Scholar
  84. 84.
    Posen S, Clifton-Bligh P, Cromer T (1979) Computerized tomography of the brain in surgical hypoparathyroidism. Ann Intern Med 91:415–417PubMedGoogle Scholar
  85. 85.
    Forman MB, Sandler MP, Danziger A, Kalk WJ (1980) Basal ganglia calcification in postoperative hypoparathyroidism. Clin Endocrinol (Oxf) 12:385–390Google Scholar
  86. 86.
    Illum F, Dupont E (1985) Prevalences of CT-detected calcification in the basal ganglia in idiopathic hypoparathyroidism and pseudohypoparathyroidism. Neuroradiology 27:32–37PubMedGoogle Scholar
  87. 87.
    Kowdley KV, Coull BM, Orwoll ES (1999) Cognitive impairment and intracranial calcification in chronic hypoparathyroidism. Am J Med Sci 317:273–277PubMedGoogle Scholar
  88. 88.
    Trautner RJ, Cummings JL, Read SL, Benson DF (1988) Idiopathic basal ganglia calcification and organic mood disorder. Am J Psychiatry 145:350–353PubMedGoogle Scholar
  89. 89.
    Lopez-Villegas D, Kulisevsky J, Deus J, Junque C, Pujol J, Guardia E et al (1996) Neuropsychological alterations in patients with computed tomography-detected basal ganglia calcification. Arch Neurol 53:251–256PubMedGoogle Scholar
  90. 90.
    Fenelon G, Gray F, Paillard F, Thibierge M, Mahieux F, Guillani A (1993) A prospective study of patients with CT-detected pallidal calcifications. J Neurol Neurosurg Psychiatry 56:622–625PubMedPubMedCentralGoogle Scholar
  91. 91.
    Gomille T, Meyer RA, Falkai P, Gaebel W, Konigshausen T, Christ F (2001) Prevalence and clinical significance of computerized tomography verified idiopathic calcinosis of the basal ganglia. Radiologe 41:205–210 (German)PubMedGoogle Scholar
  92. 92.
    Raue F, Pichl J, Dorr HG, Schnabel D, Heidemann P, Hammersen G, Jaursch-Hancke C, Santen R, Schofl C, Wabitsch M, Haag C, Schulze E, Frank-Raue K (2001) Activating mutations in the calcium-sensing receptor: genetic and clinical spectrum in 25 patients with autosomal dominant hypocalcaemia: a German survey. Clin Endocrinol (Oxf) 75:760–765Google Scholar
  93. 93.
    Goswami R, Sharma R, Sreenivas V, Gupta N, Ganapathy A, Das S (2012) Prevalence and progression of basal ganglia calcification and its pathogenic mechanism in patients with idiopathic hypoparathyroidism. Clin Endocrinol (Oxf) 77:200–206Google Scholar
  94. 94.
    Wang C, Li Y, Shi L, Ren J, Patti M, Wang T, de Oliveira JR, Sobrido MJ, Quintans B, Baquero M, Cui X, Zhang XY, Wang L, Xu H, Wang J, Yao J, Dai X, Liu J, Zhang L, Ma H, Gao Y, Ma X, Feng S, Liu M, Wang QK, Forster IC, Zhang X, Liu JY (2012) Mutations in SLC20A2 link familial idiopathic basal ganglia calcification with phosphate homeostasis. Nat Genet 44:254–256PubMedGoogle Scholar
  95. 95.
    Goswami R, Brown EM, Kochupillai N, Gupta N, Rani R, Kifor O, Chattopadhyay N (2004) Prevalence of calcium sensing receptor autoantibodies in patients with sporadic idiopathic hypoparathyroidism. Eur J Endocrinol 150:9–18PubMedGoogle Scholar
  96. 96.
    Langdahl BL, Mortensen L, Vesterby A, Eriksen EF, Charles P (1996) Bone histomorphometry in hypoparathyroid patients treated with vitamin D. Bone 18:103–108PubMedGoogle Scholar
  97. 97.
    Kruse K, Kracht U, Wohlfart K, Kruse U (1989) Biochemical markers of bone turnover, intact serum parathyroid hormone, and renal calcium excretion in patients with pseudohypoparathyroidism and hypoparathyroidism before and during vitamin D treatment. Eur J Pediatr 148:535–539PubMedGoogle Scholar
  98. 98.
    Mizunashi K, Furukawa Y, Miura R, Yumita S, Sohn HE, Yoshinaga K (1988) Effects of active vitamin D3 and parathyroid hormone on the serum osteocalcin in idiopathic hypoparathyroidism and pseudohypoparathyroidism. J Clin Invest 82:861–865PubMedPubMedCentralGoogle Scholar
  99. 99.
    Abugassa S, Nordenstrom J, Eriksson S, Sjoden G (1993) Bone mineral density in patients with chronic hypoparathyroidism. J Clin Endocrinol Metab 76:1617–1621PubMedGoogle Scholar
  100. 100.
    Fujiyama K, Kiriyama T, Ito M, Nakata K, Yamashita S, Yokoyama N, Nagataki S (1995) Attenuation of postmenopausal high turnover bone loss in patients with hypoparathyroidism. J Clin Endocrinol Metab 80:2135–2138PubMedGoogle Scholar
  101. 101.
    Seeman E, Wahner HW, Offord KP, Kumar R, Johnson WJ, Riggs BL (1982) Differential effects of endocrine dysfunction on the axial and the appendicular skeleton. J Clin Invest 69:1302–1309PubMedPubMedCentralGoogle Scholar
  102. 102.
    Touliatos JS, Sebes JI, Hinton A, McCommon D, Karas JG, Palmieri GM (1995) Hypoparathyroidism counteracts risk factors for osteoporosis. Am J Med Sci 310:56–60PubMedGoogle Scholar
  103. 103.
    Sikjaer T, Rejnmark L, Thomsen JS, Tietze A, Bruel A, Andersen G, Mosekilde L (2012) Changes in 3-dimensional bone structure indices in hypoparathyroid patients treated with PTH (1–84): a randomized controlled study. J Bone Miner Res 24:781–788Google Scholar
  104. 104.
    Takamura Y, Miyauchi A, Yabuta T, Kihara M, Ito Y, Miya A (2013) Attenuation of postmenopausal bone loss in patients with transient hypoparathyroidism after total thyroidectomy. World J Surg 37:2860–2865PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2015

Authors and Affiliations

  1. 1.Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Internal MedicineMayo Clinic College of MedicineRochesterUSA

Personalised recommendations