Skip to main content

Treatment of Primary CMD

  • Chapter
  • First Online:
Coronary Microvascular Dysfunction

Abstract

Treatment of CMD caused by cardiovascular risk factors can be improved by their correction by means of appropriate lifestyle modifications and/or pharmacological interventions. Primary stable MVA can be treated by standard anti-ischemic drugs, but in several cases angina symptoms are not adequately controlled. Accordingly, several alternative forms of therapy, either pharmacological and nonpharmacological, have been proposed and are discussed in this chapter. While the pharmacological approach to acute MVA still waits to be defined, treatment of takotsubo disease is mainly based on the control of hemodynamic state, due to the usual spontaneous improvement of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pirat B, Bozbas H, Simsek V et al (2008) Impaired coronary flow reserve in patients with metabolic syndrome. Atherosclerosis 201:112–116

    Article  PubMed  CAS  Google Scholar 

  2. Nakanishi K, Fukuda S, Shimada K et al (2012) Impaired coronary flow reserve as a marker of microvascular dysfunction to predict long-term cardiovascular outcomes, acute coronary syndrome and the development of heart failure. Circ J 76:1958–1964

    Article  PubMed  Google Scholar 

  3. Motz W, Strauer BE (1996) Improvement of coronary flow reserve after long-term therapy with enalapril. Hypertension 27:1031–1038

    Article  PubMed  CAS  Google Scholar 

  4. Tomás JP, Moya JL, Barrios V et al (2006) Effect of candesartan on coronary flow reserve in patients with systemic hypertension. J Hypertens 24:2109–2114

    Article  PubMed  Google Scholar 

  5. Toyama T, Sato C, Koyama K et al (2012) Olmesartan improves coronary flow reserve of hypertensive patients using coronary magnetic resonance imaging compared with amlodipine. Cardiology 122:230–236

    Article  PubMed  CAS  Google Scholar 

  6. Parodi O, Neglia D, Palombo C et al (1997) Comparative effects of enalapril and verapamil on myocardial blood flow in systemic hypertension. Circulation 96:864–873

    Article  PubMed  CAS  Google Scholar 

  7. Galderisi M, Cicala S, D’Errico A, de Divitiis O, de Simone G (2004) Nebivolol improves coronary flow reserve in hypertensive patients without coronary heart disease. J Hypertens 22:2201–2208

    Article  PubMed  CAS  Google Scholar 

  8. Xiaozhen H, Yun Z, Mei Z, Yu S (2010) Effect of carvedilol on coronary flow reserve in patients with hypertensive left-ventricular hypertrophy. Blood Press 19:40–47

    Article  PubMed  Google Scholar 

  9. Gullu H, Erdogan D, Caliskan M et al (2006) Different effects of atenolol and nebivolol on coronary flow reserve. Heart 92:1690–1691

    Article  PubMed  CAS  Google Scholar 

  10. Naya M, Tsukamoto T, Morita K et al (2007) Olmesartan, but not amlodipine, improves endothelium-dependent coronary dilation in hypertensive patients. J Am Coll Cardiol 50:1144–1149

    Article  PubMed  CAS  Google Scholar 

  11. Brush JE Jr, Cannon RO 3rd, Schenke WH et al (1988) Angina due to coronary microvascular disease in hypertensive patients without left ventricular hypertrophy. N Engl J Med 319:1302–1307

    Article  PubMed  Google Scholar 

  12. Vogt M, Motz W, Strauer BE (1992) Coronary haemodynamics in hypertensive heart disease. Eur Heart J 13(Suppl D):44–49

    Google Scholar 

  13. Tanaka M, Fujiwara H, Onodera T et al (1986) Quantitative analysis of narrowing of intramyocardial small arteries in normal heart, hypertensive hearts, and hearts with hypertrophic cardiomyopathy. Circulation 76:1130–1139

    Google Scholar 

  14. Caliskan M, Erdogan D, Gullu H et al (2007) Effects of atorvastatin on coronary flow reserve in patients with slow coronary flow. Clin Cardiol 30:475–479

    Article  PubMed  Google Scholar 

  15. Egashira K, Takeshita A (1995) Beneficial effect of cholesterol-lowering therapy on endothelium-dependent coronary vasodilation in patients with hypercholesterolemia. Ann N Y Acad Sci 748:622–625

    Article  PubMed  CAS  Google Scholar 

  16. Rana O, Byrne CD, Kerr D et al (2011) Acute hypoglycemia decreases myocardial blood flow reserve in patients with type 1 diabetes mellitus and in healthy humans. Circulation 124:1548–1556

    Article  PubMed  CAS  Google Scholar 

  17. Eroğlu S, Sade LE, Bozbaş H, Müderrisoğlu H (2009) Decreased coronary flow reserve in obese women. Turk Kardiyol Dern Ars 37:391–396

    PubMed  Google Scholar 

  18. Nerla R, Tarzia P, Sestito A et al (2012) Effect of bariatric surgery on peripheral flow-mediated dilation and coronary microvascular function. Nutr Metab Cardiovasc Dis 22:626–634

    Article  PubMed  CAS  Google Scholar 

  19. Kaufmann PA, Gnecchi-Ruscone T, di Terlizzi M, Schäfers KP, Lüscher TF, Camici PG (2000) Coronary heart disease in smokers: vitamin C restores coronary microcirculatory function. Circulation 102:1233–1238

    Article  PubMed  CAS  Google Scholar 

  20. Kaski JC, Rosano GMC, Collins P, Nihoyannopoulos P, Maseri A, Poole-Wilson PA (1995) Cardiac syndrome X: clinical characteristics and left ventricular function: long-term follow-up study. J Am Coll Cardiol 25:807–814

    Article  PubMed  CAS  Google Scholar 

  21. Lamendola P, Lanza GA, Spinelli A et al (2010) Long-term prognosis of patients with cardiac syndrome X. Int J Cardiol 140:197–199

    Article  PubMed  Google Scholar 

  22. Kaski JC (2001) Valenzuela Garcia LF. Therapeutic options for the management of patients with cardiac syndrome X. Eur Heart J 22:283–293

    Article  PubMed  CAS  Google Scholar 

  23. Lanza GA, Giordano A, Pristipino C et al (2000) Relationship between myocardial 123I-metaiodobenzylguanidine scintigraphic uptake and heart rate variability in patients with syndrome X. Ital Heart J 1:221–225

    PubMed  CAS  Google Scholar 

  24. Fragasso G, Chierchia SL, Pizzetti G et al (1997) Impaired left ventricular filling dynamics in patients with angina and angiographically normal coronary arteries: effect of beta adrenergic blockade. Heart 77:32–39

    PubMed  CAS  Google Scholar 

  25. Lanza GA, Colonna G, Pasceri V, Maseri A (1999) Atenolol versus amlodipine versus isosorbide-5-mononitrate on anginal symptoms in syndrome X. Am J Cardiol 84:854–856

    Article  PubMed  CAS  Google Scholar 

  26. Leonardo F, Fragasso G, Rossetti E et al (1999) Comparison of trimetazidine with atenolol in patients with syndrome X: effects on diastolic function and exercise tolerance. Cardiologia 44:1065–1069

    PubMed  CAS  Google Scholar 

  27. Romeo F, Gaspardone A, Ciavolella M, Gioffrè P, Reale A (1988) Verapamil versus acebutolol for syndrome X. Am J Cardiol 62:312–313

    Article  PubMed  CAS  Google Scholar 

  28. Ferrini D, Bugiardini R, Galvani M et al (1986) Opposing effects of propranolol and diltiazem on the angina threshold during an exercise test in patients with syndrome X. G Ital Cardiol 16:224–231

    PubMed  CAS  Google Scholar 

  29. Bugiardini R, Borghi A, Biagetti L, Puddu P (1989) Comparison of verapamil versus propranolol therapy in syndrome X. Am J Cardiol 63:286–290

    Article  PubMed  CAS  Google Scholar 

  30. Cannon RO, Watson RM, Rosing DR, Epstein SE (1985) Efficacy of calcium channel blocker therapy for angina pectoris resulting from small-vessel coronary artery disease and abnormal vasodilator reserve. Am J Cardiol 56:242–246

    Article  PubMed  Google Scholar 

  31. Ozçelik F, Altun A, Ozbay G (1999) Antianginal and anti-ischemic effects of nisoldipine and ramipril in patients with syndrome X. Clin Cardiol 22:361–365

    Article  PubMed  Google Scholar 

  32. Montorsi P, Cozzi S, Loaldi A et al (1990) Acute coronary vasomotor effects of nifedipine and therapeutic correlates in syndrome X. Am J Cardiol 66:302–307

    Article  PubMed  CAS  Google Scholar 

  33. Sütsch G, Oechslin E, Mayer I, Hess OM (1995) Effect of diltiazem on coronary flow reserve in patients with microvascular angina. Int J Cardiol 52:135–143

    Article  PubMed  Google Scholar 

  34. Montorsi P, Manfredi M, Loaldi A et al (1989) Comparison of coronary vasomotor responses to nifedipine in syndrome X and in Prinzmetal’s angina pectoris. Am J Cardiol 63:1198–1202

    Article  PubMed  CAS  Google Scholar 

  35. Harrison DG, Bates JN (1993) The nitrovasodilators: new ideas about old drugs. Circulation 87:1461–1467

    Article  PubMed  CAS  Google Scholar 

  36. Kemp HG, Vokonas PS, Cohn PF, Gorlin R (1973) The anginal syndrome associated with normal coronary angiograms. Am J Med 54:735–742

    Article  PubMed  Google Scholar 

  37. Lanza GA, Manzoli A, Bia E, Crea F, Maseri A (1994) Acute effects of nitrates on exercise testing in patients with syndrome X: clinical and pathophysiological implications. Circulation 90:2695–2700

    Article  PubMed  CAS  Google Scholar 

  38. Radice M, Giudici V, Pusineri E et al (1996) Different effects of acute administration of aminophylline and nitroglycerin on exercise capacity in patients with syndrome X. Am J Cardiol 78:88–90

    Article  PubMed  CAS  Google Scholar 

  39. Russo G, Di Franco A, Lamendola P et al (2013) Lack of effect of nitrates on exercise stress test results in patients with microvascular angina. Cardiovasc Drugs Ther 27:229–234

    Article  PubMed  CAS  Google Scholar 

  40. Bugiardini R, Borghi A, Pozzati A, Ottani F, Morgagni G, Puddu P (1993) The paradox of nitrates in patients with angina pectoris and angiographically normal coronary arter-ies. Am J Cardiol 72:343–347

    Article  PubMed  CAS  Google Scholar 

  41. Crea F, Pupita G, Galassi AR et al (1990) Role of adenosine in pathogenesis of anginal pain. Circulation 81:164–172

    Article  PubMed  CAS  Google Scholar 

  42. Lagerqvist B, Silven C, Waldenstrom A (1992) Low threshold for adenosine induced chest pain in patients with angina pectoris and normal coronary angiogram. Br Heart J 68:282–283

    Article  PubMed  CAS  Google Scholar 

  43. Emdin M, Picano E, Lattanzi F, L’Abbate A (1989) Improved exercise capacity with acute aminophylline administration in patients with syndrome X. J Am Coll Cardiol 14:1450–1453

    Article  PubMed  CAS  Google Scholar 

  44. Yoshio H, Shimizu M, Kita Y et al (1995) Effects of short-term aminophylline administration on cardiac functional reserve in patients with syndrome X. J Am Coll Cardiol 25:147–151

    Article  Google Scholar 

  45. Lanza GA, Cianflone D, Buffon A, Crea F, Maseri A (1993) Terapia dell’ angina microvascolare. Cardiologia 38(Suppl. 1/12):169–179

    PubMed  CAS  Google Scholar 

  46. Lanza GA, Gaspardone A, Pasceri V et al (1997) Effects of bamiphylline on exercise testing in patients with syndrome X. G Ital Cardiol 27:50–54

    PubMed  CAS  Google Scholar 

  47. Elliott PM, Krzyzowska-Dickinson K, Calvino R, Hann C, Kaski JC (1997) Effect of oral aminophylline in patients with angina and normal coronary arteriograms (syndrome X). Heart 77:523–526

    PubMed  CAS  Google Scholar 

  48. Opie LH, Yusuf S, Poole-Wilson PA, Pfeffer M (2001) Angiotensin converting enzyme inhibitors (ACE), angiotensin-II receptor antagonists and aldosterone antagonists. In: Opie LH, Gersh BJ (eds) Drugs for the heart. W.B. Saunders Company, Philadelphia, pp 122–77

    Google Scholar 

  49. Camici P, Marracini P, Gistri R et al (1994) Adrenergically mediated coronary vasoconstriction in patients with syndrome X. Cardiovasc Drugs Ther 8:221–226

    Article  PubMed  CAS  Google Scholar 

  50. Kaski JC, Rosano G, Gavrielides S, Chen L (1994) Effects of angiotensin-converting enzyme inhibition on exercise-induced angina and ST segment depression in patients with microvascular angina. J Am Coll Cardiol 23:652–657

    Article  PubMed  CAS  Google Scholar 

  51. Nalbantgil I, Onder R, Altintig A et al (1998) Therapeutic benefits of cilazapril in patients with syndrome X. Cardiology 89:130–133

    Article  PubMed  CAS  Google Scholar 

  52. Pizzi C, Manfrini O, Fontana F, Bugiardini R (2004) Angiotensin-converting enzyme inhibitors and 3-hydroxy-3-methylglutaryl coenzyme A reductase in cardiac syndrome X: role of superoxide dismutase activity. Circulation 109:53–58

    Article  PubMed  CAS  Google Scholar 

  53. Chen JW, Hsu NW, Wu TC et al (2002) Long-term angiotensin-converting enzyme inhibition reduces plasma asymmetric dimethylarginine and improves endothelial nitric oxide bioavailability and coronary microvascular function in patients with syndrome X. Am J Cardiol 90:974–982

    Article  PubMed  CAS  Google Scholar 

  54. Rosen SD, Lorenzoni R, Kaski JC, Foale RA, Camici PG (1999) Effect of alpha1-adrenoceptor blockade on coronary vasodilator reserve in cardiac syndrome X. J Cardiovasc Pharmacol 34:554–560

    Article  PubMed  CAS  Google Scholar 

  55. Camici PG, Marraccini P, Gistri R, Salvadori PA, Sorace O, L’Abbate A (1994) Adrenergically mediated coronary vasoconstriction in patients with syndrome X. Cardiovasc Drugs Ther 8:221–226

    Article  PubMed  CAS  Google Scholar 

  56. Bøtker HE, Sonne HS, Schmitz O, Nielsen TT (1998) Effects of doxazosin on exercise-induced angina pectoris, ST-segment depression, and insulin sensitivity in patients with syndrome X. Am J Cardiol 82:1352–1356

    Article  PubMed  Google Scholar 

  57. Galassi AR, Kaski JC, Pupita G, Vejar M, Crea F, Maseri A (1989) Lack of evidence for alpha-adrenergic receptor-mediated mechanisms in the genesis of ischemia in syndrome X. Am J Cardiol 64:264–269

    Article  PubMed  CAS  Google Scholar 

  58. Cannon RO 3rd, Quyyumi AA, Mincemoyer R et al (1994) Imipramine in patients with chest pain despite normal coronary angiograms. N Engl J Med 330:1411–1417

    Article  PubMed  Google Scholar 

  59. Hongo M, Takenaka H, Uchikawa S, Nakatsuka T, Watanabe N, Sekiguchi M (1995) Coronary microvascular response to intracoronary administration of nicorandil. Am J Cardiol 75:246–250

    Article  PubMed  CAS  Google Scholar 

  60. Yamabe H, Namura H, Yano T et al (1995) Effect of nicorandil on abnormal coronary flow reserve assessed by exercise 201Tl scintigraphy in patients with angina pectoris and nearly normal coronary arteriograms. Cardiovasc Drugs Ther 9:755–761

    Article  PubMed  CAS  Google Scholar 

  61. Chen JW, Lee WL, Hsu NW et al (1997) Effects of short-term treatment of nicorandil on exercise-induced myocardial ischemia and abnormal cardiac autonomic activity in microvascular angina. Am J Cardiol 80:32–38

    Article  PubMed  CAS  Google Scholar 

  62. Nalbantgil S, Altinti A, Yilmaz H, Nalbantgil II, Önder R (1999) The effect of trimetazidine in the treatment of microvascular angina. Int J Angiol 8:40–43

    Article  PubMed  Google Scholar 

  63. Hasenfuss G, Maier LS (2008) Mechanism of action of the new antiischemia drug ranolazine. Clin Res Cardiol 97:222–226

    Article  PubMed  CAS  Google Scholar 

  64. Keating GM (2008) Ranolazine: a review of its use in chronic stable angina pectoris. Drugs 68:2483–2503

    Article  PubMed  CAS  Google Scholar 

  65. Mehta PK, Goykhman P, Thomson LE et al (2011) Ranolazine improves angina in women with evidence of myocardial ischemia but no obstructive coronary artery disease. JACC Cardiovasc Imaging 4:514–522

    Article  PubMed  Google Scholar 

  66. Villano A, Di Franco A, Nerla R et al (2013) Effects of ivabradine and ranolazine in patients with microvascular angina pectoris. Am J Cardiol (Epub ahead of print)

    Google Scholar 

  67. Borer JS, Fox K, Jaillon P, Lerebours G, for the Ivabradine Investigators Group (2003) Antianginal and antiischemic effects of ivabradine, an If inhibitor, in stable angina. A randomized, double blind, multicentered, placebo-controlled trial. Circulation 107:817–823

    Article  PubMed  Google Scholar 

  68. Tardif JC, Ford I, Tendera M, Bourassa MG, Fox K, INITIATIVE Investigators (2005) Efficacy of ivabradine, a new selective I(f) inhibitor, compared with atenolol in patients with chronic stable angina. Eur Heart J 26:2529–2536

    Article  PubMed  CAS  Google Scholar 

  69. Fábián E, Varga A, Picano E, Vajo Z, Rónaszéki A, Csanády M (2004) Effect of simvastatin on endothelial function in cardiac syndrome X patients. Am J Cardiol 94:652–655

    Article  PubMed  Google Scholar 

  70. Kayikcioglu M, Payzin S, Yavuzgil O, Kultursay H, Can LH, Soydan I (2003) Benefits of statin treatment in cardiac syndrome-X. Eur Heart J 24:1999–2005

    Article  PubMed  CAS  Google Scholar 

  71. Collins P (1992) Role of endothelial dysfunction and oestrogens in syndrome X. Coron Artery Dis 3:593–598

    Article  Google Scholar 

  72. Moreau KL, Hildreth KL, Meditz AL, Deane KD, Kohrt WM (2012) Endothelial function is impaired across the stages of the menopause transition in healthy women. J Clin Endocrinol Metab 97:4692–4700

    Article  PubMed  CAS  Google Scholar 

  73. Lieberman EH, Gerhard MD, Uehata A et al (1994) Estrogen improves endothelium-dependent, flow-mediated vasodilation in postmenopausal women. Ann Intern Med 121:936–941

    Article  PubMed  CAS  Google Scholar 

  74. Hogarth AJ, Graham LN, Corrigan JH, Deuchars J, Mary DA, Greenwood JP (2011) Sympathetic nerve hyperactivity and its effect in postmenopausal women. J Hypertens 29:2167–2175

    Article  PubMed  CAS  Google Scholar 

  75. Rosano GM, Patrizi R, Leonardo F et al (1997) Effect of estrogen replacement therapy on heart rate variability and heart rate in healthy postmenopausal women. Am J Cardiol 80:815–817

    Article  PubMed  CAS  Google Scholar 

  76. Rosano GMC, Peters NS, Lefroy D et al (1996) Symptomatic response to 17b-estradiol in women with syndrome X. J Am Coll Cardiol 28:1500–1505

    Article  PubMed  CAS  Google Scholar 

  77. Albertsson PA, Emanuelsson H, Milsom I (1996) Beneficial effect of treatment with transdermal estradiol-17-beta on exercise-induced angina and ST segment depression in syndrome X. Int J Cardiol 54:13–20

    Article  PubMed  CAS  Google Scholar 

  78. Anderson GL, Limacher M, Assaf AR et al (2004) Women’s Health Initiative Steering Committee. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women’s Health Initiative randomized controlled trial. JAMA 291:1701–1712

    Article  PubMed  CAS  Google Scholar 

  79. Jhund PS, Dawson N, Davie AP et al (2001) Attenuation of endothelin-1 induced vasoconstriction by 17beta estradiol is not sustained during long-term therapy in postmenopausal women with coronary heart disease. J Am Coll Cardiol 37:1367–1373

    Article  PubMed  CAS  Google Scholar 

  80. Cox ID, Hann CM, Kaski JC (1998) Low dose imipramine improves chest pain but not quality of life in patients with angina and normal coronary angiograms. Eur Heart J 19:250–254

    Article  PubMed  CAS  Google Scholar 

  81. Norrsell H, Eliasson T, Mannheimer C et al (1997) Effects of pacing-induced myocardial stress and spinal cord stimulation on whole body and cardiac norepinephrine spillover. Eur Heart J 18:1890–1896

    Article  PubMed  CAS  Google Scholar 

  82. Eliasson T, Albertsson P, Hardhammar P, Emanuelsson H, Augustinsson E, Mannheimer C (1992) Spinal cord stimulation in syndrome X. Eur Heart J 13(Abstr Suppl):266

    Google Scholar 

  83. Lanza GA, Sestito A, Sandric S et al (2001) Spinal cord stimulation in patients with refractory anginal pain and normal coronary arteries. Ital Heart J 2:25–30

    PubMed  CAS  Google Scholar 

  84. Sgueglia GA, Sestito A, Spinelli A et al (2007) Long-term follow-up of patients with cardiac syndrome X treated by spinal cord stimulation. Heart 93:591–597

    Article  PubMed  Google Scholar 

  85. Mannheimer C, Carlsson C-A, Emanuelsson H, Vendin A, Waagstein F, Wilhelmsson C (1985) The effects of transcutaneous electric nerve stimulation in patients with severe angina pectoris. Circulation 71:308–316

    Article  PubMed  CAS  Google Scholar 

  86. Chauhan A, Mullins PA, Thuraisingham SI, Taylor G, Petch MC, Schofield PM (1994) Effect of transcutaneous electrical nerve stimulation on calcium antagonists. Circulation 89:694–702

    Article  PubMed  CAS  Google Scholar 

  87. Sanderson JE, Woo KS, Chung HK, Chan WW, Tse LK, White HD (1996) The effect of transcutaneous electrical nerve stimulation on coronary and systemic haemodynamics in syndrome X. Coron Artery Dis 7:547–552

    Article  PubMed  CAS  Google Scholar 

  88. Kitsou V, Xanthos T, Roberts R, Karlis GM, Padadimitriou L (2010) Enhanced external counterpulsation: mechanisms of action and clinical applications. Acta Cardiol 65:239–247

    Article  PubMed  Google Scholar 

  89. Kronhaus KD, Lawson WE (2009) Enhanced external counterpulsation is an effective treatment for Syndrome X. Int J Cardiol 135:256–257

    Article  PubMed  Google Scholar 

  90. Asbury EA, Slattery C, Grant A, Evans L, Barbir M, Collins P (2008) Cardiac rehabilitation for the treatment of women with chest pain and normal coronary arteries. Menopause 15:454–460

    Article  PubMed  Google Scholar 

  91. Bass C, Wade C (1984) Chest pain with normal coronary arteries: a comparative study of psychiatric and social morbidity. Psychol Med 14:51–61

    Article  PubMed  CAS  Google Scholar 

  92. Potts SG, Lewin R, Fox KAA, Johnstone EC, Cay EL (1999) Group psychological treatment for chest pain with normal coronary arteries: a controlled trial. QJM 92:81–86

    Article  PubMed  CAS  Google Scholar 

  93. Beltrame JF, Turner SP, Leslie SL, Solomon P, Freedman SB, Horowitz JD (2004) The angiographic and clinical benefits of mibefradil in the coronary slow flow phenomenon. J Am Coll Cardiol 44:57–62

    Article  PubMed  CAS  Google Scholar 

  94. Fu XH, Fan WZ, Gu XS (2007) Wei et al. Effect of intracoronary administration of anisodamine on slow reflow phenomenon following primary percutaneous coronary intervention in patients with acute myocardial infarction. Chin Med J (Engl) 120:1226–1231

    CAS  Google Scholar 

  95. Galiuto L, De Caterina AR, Porfidia A et al (2010) Reversible coronary microvascular dysfunction: a common pathogenetic mechanism in Apical Ballooning or Tako-Tsubo Syndrome. Eur Heart J 31:1319–1327

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Crea .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Crea, F., Lanza, G.A., Camici, P.G. (2014). Treatment of Primary CMD. In: Coronary Microvascular Dysfunction. Springer, Milano. https://doi.org/10.1007/978-88-470-5367-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5367-0_8

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5366-3

  • Online ISBN: 978-88-470-5367-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics