Skip to main content

CMD in Myocardial Diseases

  • Chapter
  • First Online:
Coronary Microvascular Dysfunction

Abstract

CMD has been documented in most patients with myocardial diseases, including HCM, dilated cardiomyopathy, aortic stenosis, myocarditis, Anderson-Fabry disease, and cardiac amyloidosis. In this setting CMD is mainly caused by structural alterations. The consequent reduction of CFR is responsible for effort-induced myocardial ischemia and angina. CMD can be severe enough to determine focal areas of myocardial necrosis. Recent data indicate that in patients with HCM or dilated cardiomyopathy the presence of focal areas of myocardial necrosis, detected by CMR, is associated with a worse prognosis, mainly driven by sudden death, probably caused by myocardial necrosis-related ventricular arrhythmias. This prognostic information is additive to that provided by traditional risk factors and can therefore improve the identification of patients who need ICD implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alcalai R, Seidman JG, Seidman CE (2008) Genetic basis of hypertrophic cardiomyopathy: from bench to the clinics. J Cardiovasc Electrophysiol 19:104–110

    PubMed  Google Scholar 

  2. Richard P, Charron P, Carrier L et al (2003) The eurogene heart failure project. Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 107:2227–2232

    Article  PubMed  Google Scholar 

  3. Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE (1995) Prevalence of hypertrophic cardiomyopathy in a general population of young adults: echocardiographic analysis of 4111 subjects in the CARDIA study. Circulation 92:785–789

    Article  PubMed  CAS  Google Scholar 

  4. Maron MS, Maron BJ, Harrigan C et al (2009) Hypertrophic cardiomyopathy phenotype revisited after 50 years with cardiovascular magnetic resonance. J Am Coll Cardiol 54:220–228

    Article  PubMed  Google Scholar 

  5. Klues HG, Schiffers A, Maron BJ (1995) Phenotypic spectrum and patterns of left ventricular hypertrophy in hypertrophic cardiomyopathy: morphologic observations and significance as assessed by two-dimensional echocardiography in 600 patients. J Am Coll Cardiol 26:1699–1708

    Article  PubMed  CAS  Google Scholar 

  6. Maron BJ, Spirito P, Shen W-K et al (2007) Implantable cardioverter-defibrillators and prevention of sudden cardiac death in hypertrophic cardiomyopathy. JAMA 298:405–412

    Article  PubMed  CAS  Google Scholar 

  7. Cannon RO 3rd, Dilsizian V, O’Gara PT et al (1991) Myocardial metabolic, hemodynamic, and electrocardiographic significance of reversible thallium-201 abnormalities in hypertrophic cardiomyopathy. Circulation 83:1660–1667

    Article  PubMed  Google Scholar 

  8. Roberts WC, Ferrans VJ (1975) Pathologic anatomy of the cardiomyopathies. Idiopathic dilated and hypertrophic types, infiltrative types, and endomyocardial disease with and without eosinophilia. Hum Pathol 6:287–342

    Article  PubMed  CAS  Google Scholar 

  9. Kaul S, Ito H (2004) Microvasculature in acute myocardial ischemia: Part I: evolving concepts in pathophysiology, diagnosis, and treatment. Circulation 109:146–149

    Article  PubMed  Google Scholar 

  10. Krams R, Kofflard MJ, Duncker DJ et al (1998) Decreased coronary flow reserve in hypertrophic cardiomyopathy is related to remodeling of the coronary microcirculation. Circulation 97:230–233

    Article  PubMed  CAS  Google Scholar 

  11. Schwartzkopff B, Mundhenke M, Strauer BE (1998) Alterations of the architecture of subendocardial arterioles in patients with hypertrophic cardiomyopathy and impaired coronary vasodilator reserve: a possible cause for myocardial ischemia. J Am Coll Cardiol 31:1089–1096

    Article  PubMed  CAS  Google Scholar 

  12. Camici PG, Chiriatti G, Lorenzoni R et al (1991) Coronary vasodilation is impaired in both hypertrophied and nonhypertrophied myocardium of patients with hypertrophic cardiomyopathy: a study with nitrogen-13 ammonia and positron emission tomography. J Am Coll Cardiol 17:879–886

    Article  PubMed  CAS  Google Scholar 

  13. Maron BJ, Wolfson JK, Epstein SE, Roberts WC (1986) Intramural (“small vessel”) coronary artery disease in hypertrophic cardiomyopathy. J Am Coll Cardiol 8:545–557

    Article  PubMed  CAS  Google Scholar 

  14. Maron MS, Olivotto I, Maron BJ et al (2009) The case for myocardial ischemia in hypertrophic cardiomyopathy. J Am Coll Cardiol 54:866–875

    Article  PubMed  Google Scholar 

  15. Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG (2003) Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 349:1027–1035

    Article  PubMed  CAS  Google Scholar 

  16. Olivotto I, Cecchi F, Gistri R et al (2006) Relevance of coronary microvascular flow impairment to long-term remodeling and systolic dysfunction in hypertrophic cardiomyopathy. J Am Coll Cardiol 47:1043–1048

    Article  PubMed  Google Scholar 

  17. Blair E, Redwood C, Ashrafian H et al (2001) Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum Mol Genet 10:1215–1220

    Article  PubMed  CAS  Google Scholar 

  18. Maron BJ, Epstein SE, Roberts WC (1979) Hypertrophic cardiomyopathy and transmural myocardial infarction without significant atherosclerosis of the extramural coronary arteries. Am J Cardiol 43:1086–1102

    Article  PubMed  CAS  Google Scholar 

  19. Pasternac A, Noble J, Streulens Y, Elie R, Henschke C, Bourassa MG (1982) Pathophysiology of chest pain in patients with cardiomyopathies and normal coronary arteries. Circulation 65:778–789

    Article  PubMed  CAS  Google Scholar 

  20. Cannon RO 3rd, Schenke WH, Maron BJ et al (1987) Differences in coronary flow and myocardial metabolism at rest and during pacing between patients with obstructive and patients with nonobstructive hypertrophic cardiomyopathy. J Am Coll Cardiol 10:53–62

    Article  PubMed  Google Scholar 

  21. Basso C, Thiene G, Corrado D, Buja G, Melacini P, Nava A (2000) Hypertrophic cardiomyopathy and sudden death in the young: pathologic evidence of myocardial ischemia. Hum Pathol 31:988–998

    Article  PubMed  CAS  Google Scholar 

  22. Olivotto I, Cecchi F, Poggesi C, Yacoub MH (2012) Patterns of disease progression in hypertrophic cardiomyopathy: an individualized approach to clinical staging. Circ Heart Fail 5:535–546

    Article  PubMed  Google Scholar 

  23. Green JJ, Berger JS, Kramer CM, Salerno M (2012) Prognostic value of late gadolinium enhancement in clinical outcomes for hypertrophic cardiomyopathy. JACC Cardiovasc Imaging 5:370–377

    Article  PubMed  Google Scholar 

  24. Camici PG, Olivotto I, Rimoldi OE (2012) The coronary circulation and blood flow in left ventricular hypertrophy. J Mol Cell Cardiol 52:857–864

    Article  PubMed  CAS  Google Scholar 

  25. Olivotto I, Maron BJ, Appelbaum E et al (2010) Spectrum and clinical significance of systolic function and myocardial fibrosis assessed by cardiovascular magnetic resonance in hypertrophic cardiomyopathy. Am J Cardiol 106:261–267

    Article  PubMed  Google Scholar 

  26. Petersen SE, Jerosch-Herold M, Hudsmith LE et al (2007) Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: new insights from multiparametric magnetic resonance imaging. Circulation 115:2418–2425

    Article  PubMed  Google Scholar 

  27. Maron BJ, McKenna WJ, Danielson GK et al (2003) ACC/ESC clinical expert consensus document on hypertrophic cardiomyopathy: a report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents and the European society of cardiology committee for practice guidelines (committee to develop an expert consensus document on hypertrophic cardiomyopathy). Eur Heart J 24:1965–1991

    Article  PubMed  Google Scholar 

  28. Olivotto I, Girolami F, Sciagrà R et al (2011) Microvascular function is selectively impaired in patients with hypertrophic cardiomyopathy and sarcomere myofilament gene mutations. J Am Coll Cardiol 58:839–848

    Article  PubMed  Google Scholar 

  29. Richardson P, McKenna W, Bristow M et al (1996) Report of the 1995 World Health Organization/International Society and Federation of Cardiology. Task force on the definition and classification of cardiomyopathies. Circulation 93:841–842

    Google Scholar 

  30. Redfield MM, Gersh BJ, Bailey KL, Ballard DJ, Rodeheffer RJ (1994) Natural history of incidentally discovered, asymptomatic idiopathic dilated cardiomyopathy. Am J Cardiol 74:737–739

    Article  PubMed  CAS  Google Scholar 

  31. Dec GW, Fuster V (1994) Idiopathic dilated cardiomyopathy. New Engl J Med 331:1564–1575

    Article  PubMed  CAS  Google Scholar 

  32. Startari U, Taylor MRG, Sinagra G, Di Lenarda A, Mestroni L (2002) Cardiomiopatia dilatativa: eziologia, criteri clinici di diagnosi e screening della forma familiare. Ital Heart J 3(Suppl):378–385

    Google Scholar 

  33. Schwimmbeck PL, Badorff C, Rohn G, Schulze K, Schultheiss HP (1996) The role of sensitized T-cells in myocarditis and dilated cardiomyopathy. Int J Cardiol 54:117–125

    Article  PubMed  CAS  Google Scholar 

  34. Yamaguchi S, Tsuiki K, Hayasaka M, Yasui S (1987) Segmental wall motion abnormalities in dilated cardiomyopathy: hemodinamic characteristics and comparison with thallium-201 myocardial scintigraphy. Am Heart J 113:1113–1128

    Article  Google Scholar 

  35. Weiss MB, Ellis K, Sciacca RR, Johnson LL, Schmidt DH, Cannon PJ (1976) Myocardial blood flow in congestive and hypertrophic cardiomyopathy: relationship to peak wall stress and mean velocity of circumferential fiber shortening. Circulation 54:484–494

    Article  PubMed  CAS  Google Scholar 

  36. Neglia D, Parodi O, Gallopin M et al (1995) Myocardial blood flow response to pacing tachycardia and to dipyridamole infusion in patients with dilated cardiomyopathy without overt heart failure: a quantitative assessment by positron emission tomography. Circulation 92:796–804

    Article  PubMed  CAS  Google Scholar 

  37. Opherk D, Schwarz F, Mall G, Manthey J, Baller D, Kubler W (1983) Coronary dilatory capacity in idiopathic dilated cardiomyopathy: analysis of 16 patients. Am J Cardiol 51:1657–1662

    Article  PubMed  CAS  Google Scholar 

  38. Canetti M, Akhter MW, Lerman A et al (2003) Evaluation of myocardial blood flow reserve in patients with chronic congestive heart failure due to idiopathic dilated cardiomyopathy. Am J Cardiol 92:1246–1249

    Article  PubMed  Google Scholar 

  39. Merlet P, Mazoyer B, Hittinger L et al (1993) Assessment of coronary reserve in man: comparison between positron emission tomography with oxygen-15-labeled water and intracoronary Doppler technique. J Nucl Med 34:1899–1904

    PubMed  CAS  Google Scholar 

  40. Treasure CB, Vita JA, Cox DA et al (1990) Endothelium-dependent dilation of the coronary microvascolature is impaired in dilated cardiomyopathy. Circulation 81:772–779

    Google Scholar 

  41. Neglia D, Sambuceti G, Iozzo P, L’Abbate A, Strauss HW (2002) Myocardial metabolic and receptor imaging in idiopathic dilated cardiomyopathy. Eur J Nucl Med 29:1403–1413

    Article  CAS  Google Scholar 

  42. van den Heuvel AF, van Veldhuisen DJ, van der Wall EE et al (2000) Regional myocardial blood flow reserve impairment and metabolic changes suggesting myocardial ischemia in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 35:19–28

    Article  PubMed  Google Scholar 

  43. Dutka DP, Camici PG (2003) Hibernation and congestive heart failure. Heart Failure Rev 8:167–173

    Article  Google Scholar 

  44. Stolen KQ, Kemppainen J, Kalliokoski KK et al (2004) Myocardial perfusion reserve and peripheral endothelial function in patients with idiopathic dilated cardiomyopathy. Am J Cardiol 93:64–68

    Article  PubMed  Google Scholar 

  45. Parodi O, De Maria R, Oltrona L et al (1993) Myocardial blood flow distribution in patients with ischemic heart disease or dilated cardiomyopathy undergoing heart transplantation. Circulation 88:509–522

    Article  PubMed  CAS  Google Scholar 

  46. Neglia D, Michelassi C, Trivieri MG et al (2002) Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 105:186–193

    Article  PubMed  Google Scholar 

  47. Okutucu S, Oto A (2010) Risk stratification in nonischemic dilated cardiomyopathy: current perspectives. Cardiol J 17:219–229

    PubMed  Google Scholar 

  48. Wu KC, Weiss RG, Thiemann DR et al (2008) Late gadolinium enhancement by cardiovascular magnetic resonance heralds an adverse prognosis in nonischemic cardiomyopathy. J Am Coll Cardiol 51:2414–2421

    Article  PubMed  Google Scholar 

  49. Hombach V, Merkle N, Torzewski J et al (2009) Electrocardiographic and cardiac magnetic resonance imaging parameters as predictors of a worse outcome in patients with idiopathic dilated cardiomyopathy. Eur Heart J 30:2011–2018

    Google Scholar 

  50. Lehrke S, Lossnitzer D, Schöb M et al (2011) Use of cardiovascular magnetic resonance for risk stratification in chronic heart failure: prognostic value of late gadolinium enhancement in patients with non-ischaemic dilated cardiomyopathy. Heart 97:727–732

    Article  PubMed  Google Scholar 

  51. Gould KL, Carabello BA (2003) Why angina in aortic stenosis with normal coronary arteriograms? Circulation 107:3121–3123

    Article  PubMed  Google Scholar 

  52. Ross J Jr, Braunwald E (1968) Aortic stenosis. Circulation 38:61–67

    Google Scholar 

  53. Selzer A (1987) Changing aspects of the natural history of valvular aortic stenosis. N Engl J Med 317:91–98

    Article  PubMed  CAS  Google Scholar 

  54. Marcus ML, Doty DB, Hiratzka LF et al (1982) Decreased coronary reserve: a mechanism for angina pectoris in patients with aortic stenosis and normal coronary arteries. N Engl J Med 307:1362–1366

    Article  PubMed  CAS  Google Scholar 

  55. Bache RJ, Vrobel TR, Arentzen CE et al (1981) Effect of maximal coronary vasodilation on transmural myocardial perfusion during tachycardia in dogs with left ventricular hypertrophy. Circ Res 49:742–750

    Article  PubMed  CAS  Google Scholar 

  56. Alyono D, Anderson RW, Parrish DG et al (1986) Alterations of myocardial blood flow associated with experimental canine left ventricular hypertrophy secondary to valvular aortic stenosis. Circ Res 58:47–57

    Article  PubMed  CAS  Google Scholar 

  57. Rembert JC, Kleinman LH, Fedor JM et al (1978) Myocardial blood flow distribution in concentric left ventricular hypertrophy. J Clin Invest 62:379–386

    Article  PubMed  CAS  Google Scholar 

  58. Dunn RB, Griggs DM (1983) Ventricular filling pressure as a determinant of coronary blood flow during ischemia. Am J Physiol Heart Circ Physiol 244:H429–H436

    CAS  Google Scholar 

  59. Breisch EA, Houser SR, Carey RA et al (1980) Myocardial blood flow and capillary density in chronic pressure overload of the feline left ventricle. Cardiovasc Res 14:469–475

    Article  PubMed  CAS  Google Scholar 

  60. Schwartzkopff B, Frenzel H, Dieckerhoff J, et al. Morphometric investigation of human myocardium in arterial hypertension and valvular aortic stenosis. Eur Heart J 1992;13 (Suppl D):17-23

    Google Scholar 

  61. Rajappan K, Rimoldi OE, Dutka DP et al (2002) Mechanisms of coronary microcirculatory dysfunction in patients with aortic stenosis and angiographically normal coronary arteries. Circulation 105:470–476

    Article  PubMed  Google Scholar 

  62. Rajappan K, Rimoldi OE, Camici PG, Bellenger NG, Pennell DJ, Sheridan DJ (2003) Functional changes in coronary microcirculation after valve replacement in patients with aortic stenosis. Circulation 107:3170–3175

    Article  PubMed  Google Scholar 

  63. Julius BK, Spillman M, Vassali G et al (1997) Angina pectoris in patients with aortic stenosis and normal coronary arteries: mechanisms and pathophysiological concepts. Circulation 95:892–898

    Article  PubMed  CAS  Google Scholar 

  64. Kandolf R (2004) Virus etiology of inflammatory cardiomyopathy. Dtsch Med Wochenschr 129:2187–2192

    Article  PubMed  CAS  Google Scholar 

  65. Mahrholdt H, Wagner A, Deluigi CC et al (2006) Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation 114:1581–1590

    Article  PubMed  Google Scholar 

  66. Bultmann BD, Klingel K, Sotlar K et al (2003) Fatal parvovirus B19-associated myocarditis clinically mimicking ischemic heart disease: an endothelial cell-mediated disease. Hum Pathol 34:92–95

    Article  PubMed  Google Scholar 

  67. Klingel K, Sauter M, Bock CT et al (2004) Molecular pathology of inflammatory cardiomyopathy. Med Microbiol Immunol 193:101–107

    Article  PubMed  CAS  Google Scholar 

  68. Brown KE, Anderson SM, Young NS (1993) Erythrocyte P antigen: cellular receptor for B19 parvovirus. Science 262:114–117

    Article  PubMed  CAS  Google Scholar 

  69. Kuhl U, Pauschinger M, Bock T et al (2003) Parvovirus B19 infection mimicking acute myocardial infarction. Circulation 108:945–950

    Article  PubMed  CAS  Google Scholar 

  70. Yilmaz A, Mahrholdt H, Athanasiadis A et al (2008) Coronary vasospasm as the underlying cause for chest pain in patients with PVB19 myocarditis. Heart 94:1456–1463

    Article  PubMed  CAS  Google Scholar 

  71. Vallbracht KB, Schwimmbeck PL, Kuhl U et al (2005) Differential aspects of endothelial function of the coronary microcirculation considering myocardial virus persistence, endothelial activation, and myocardial leukocyte infiltrates. Circulation 111:1784–1791

    Article  PubMed  Google Scholar 

  72. Vallbracht KB, Schwimmbeck PL, Kuhl U et al (2004) Endothelium-dependent flowmediated vasodilation of systemic arteries is impaired in patients with myocardial virus persistence. Circulation 110:2938–2945

    Article  PubMed  Google Scholar 

  73. Kugiyama K, Ohgushi M, Motoyama T et al (1997) Nitric oxide-mediated flow-dependent dilation is impaired in coronary arteries in patients with coronary spastic angina. J Am Coll Cardiol 30:920–926

    Article  PubMed  CAS  Google Scholar 

  74. Clapp BR, Hingorani AD, Kharbanda RK et al (2004) Inflammation-induced endothelial dysfunction involves reduced nitric oxide bioavailability and increased oxidant stress. Cardiovasc Res 64:172–178

    Article  PubMed  CAS  Google Scholar 

  75. Hingorani AD, Cross J, Kharbanda RK et al (2000) Acute systemic inflammation impairs endothelium-dependent dilatation in humans. Circulation 102:994–999

    Article  PubMed  CAS  Google Scholar 

  76. Shimokawa H (2000) Cellular and molecular mechanisms of coronary artery spasm: lessons from animal models. Jpn Circ J 64:1–12

    Article  PubMed  CAS  Google Scholar 

  77. Masumoto A, Mohri M, Shimokawa H et al (2002) Suppression of coronary artery spasm by the Rho-kinase inhibitor fasudil in patients with vasospastic angina. Circulation 105:1545–1547

    Article  PubMed  CAS  Google Scholar 

  78. Slotta JE, Braun OO, Menger MD et al (2006) Fasudil, a rho-kinase inhibitor, inhibits leukocyte adhesion in inflamed large blood vessels in vivo. Inflamm Res 55:364–367

    Article  PubMed  CAS  Google Scholar 

  79. Chimenti C, Morgante E, Tanzilli G et al (2008) Angina in Fabry disease reflects coronary small vessel disease. Circ Heart Fail 1:161–169

    Article  PubMed  Google Scholar 

  80. Desnick RJ, Ioannou YA, Eng CM (2001) α-galactosidase A deficiency: Fabry disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 3733–3774

    Google Scholar 

  81. Nakao S, Takenaka T, Maeda M et al (1995) An atypical variant of Fabry’s disease in men with left ventricular hypertrophy. N Engl J Med 333:288–293

    Article  PubMed  CAS  Google Scholar 

  82. Shah JS, Lee P, Hughes D et al (2005) The natural history of left ventricular systolic function in Anderson-Fabry disease. Heart 91:533–534

    Article  PubMed  CAS  Google Scholar 

  83. Chimenti C, Pieroni M, Morgante E et al (2004) Prevalence of Fabry disease in female patients with late-onset hypertrophic cardiomyopathy. Circulation 110:1047–1053

    Article  PubMed  CAS  Google Scholar 

  84. Pieroni M, Chimenti C, De Cobelli F et al (2006) Fabry’s disease cardiomyopathy: echocardiographic detection of endomyocardial glycosphingolipid compartmentalization. J Am Coll Cardiol 47:1663–1671

    Article  PubMed  Google Scholar 

  85. De Cobelli F, Esposito A, Belloni E et al (2009) Delayed-enhanced cardiac MRI for differentiation of Fabry’s disease from symmetric hypertrophic cardiomyopathy. AJR Am J Roentgenol 192:W97–W102

    Article  PubMed  Google Scholar 

  86. Eng CM, Banikazemi M, Gordon RE et al (2001) A phase 1/2 clinical trial of enzyme replacement in fabry disease: pharmacokinetic, substrate clearance, and safety studies. Am J Hum Genet 68:711–722

    Article  PubMed  CAS  Google Scholar 

  87. Desnick RJ, Brady R, Barranger J et al (2003) Fabry disease, an under-recognized multisystemic disorder: expert recommendations for diagnosis, management, and enzyme replacement therapy. Ann Intern Med 138:338–346

    Article  PubMed  Google Scholar 

  88. Elliott PM, Kindler H, Shah JS et al (2006) Coronary microvascular dysfunction in male patients with Anderson-Fabry disease and the effect of treatment with alpha galactosidase A. Heart 92:357–360

    Article  PubMed  CAS  Google Scholar 

  89. Barbey F, Brakch N, Linhart A et al (2006) Cardiac and vascular hypertrophy in Fabry disease: evidence for a new mechanism independent of blood pressure and glycosphingolipid deposition. Arterioscler Thromb Vasc Biol 26:839–844

    Article  PubMed  CAS  Google Scholar 

  90. Aerts JM, Groener JE, Kuiper S et al (2008) Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc Natl Acad Sci U S A 105:2812–2817

    Article  PubMed  CAS  Google Scholar 

  91. Altarescu GM, David F, Pursley R et al (2001) Enhanced endothelium-dependent vasodilation in Fabry disease. Stroke 32:1559–1562

    Article  PubMed  CAS  Google Scholar 

  92. Kapoor P, Thenappan T, Singh E, Kumar S, Greipp PR (2011) Cardiac amyloidosis: a practical approach to diagnosis and management. Am J Med 124:1006–1015

    Article  PubMed  CAS  Google Scholar 

  93. Westermark P, Benson MD, Buxbaum JN et al (2002) Amyloid fibril protein nomenclature. Amyloid 9:197–200

    Article  PubMed  CAS  Google Scholar 

  94. Merlini G, Bellotti V (2003) Molecular mechanisms of amyloidosis. N Engl J Med 349:583–596

    Article  PubMed  CAS  Google Scholar 

  95. Cohen AS (1967) Amyloidosis. N Engl J Med 277:522–530

    Article  PubMed  CAS  Google Scholar 

  96. Shah KB, Inoue Y, Mehra MR (2006) Amyloidosis and the heart: a comprehensive review. Arch Intern Med 166:1805–1813

    Article  PubMed  CAS  Google Scholar 

  97. Pitkanen P, Westermark P, Cornwell GG III (1984) Senile systemic amyloidosis. Am J Pathol 117:391–399

    PubMed  CAS  Google Scholar 

  98. Cornwell GG III, Murdoch WL, Kyle RA, Westermark P, Pitkanen P (1983) Frequency and distribution of senile cardiovascular amyloid: a clinicopathologic correlation. Am J Med 75:618–623

    Article  PubMed  Google Scholar 

  99. Kaye GC, Butler MG, d’Ardenne AJ, Edmondson SJ, Camm AJ, Slavin G (1986) Isolated atrial amyloid contains atrial natriuretic peptide: a report of six cases. Br Heart J 56:317–320

    Google Scholar 

  100. Kawamura S, Takahashi M, Ishihara T, Uchino F (1995) Incidence and distribution of isolated atrial amyloid: histologic and immunohistochemical studies of 100 aging hearts. Pathol Int 45:335–342

    Article  PubMed  CAS  Google Scholar 

  101. Looi LM (1993) Isolated atrial amyloidosis: a clinicopathologic study indicating increased prevalence in chronic heart disease. Hum Pathol 24:602–607

    Article  PubMed  CAS  Google Scholar 

  102. Noel LH, Zingraff J, Bardin T, Atienza C, Kuntz D, Drueke T (1987) Tissue distribution of dialysis amyloidosis. Clin Nephrol 27:175–178

    PubMed  CAS  Google Scholar 

  103. Tan SY, Irish A, Winearls CG et al (1996) Long term effect of renal transplantation on dialysisrelated amyloid deposits and symptomatology. Kidney Int 50:282–289

    Article  PubMed  CAS  Google Scholar 

  104. Siqueira-Filho AG, Cunha CL, Tajik AJ, Seward JB, Schattenberg T, Giuliani ER (1981) M-mode and two dimensional echocardiographic features in cardiac amyloidosis. Circulation 63:188–196

    Google Scholar 

  105. Maceira AM, Joshi J, Prasad SK et al (2005) Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 111:186–193

    Article  PubMed  Google Scholar 

  106. Pellikka PA, Holmes DR Jr, Edwards WD, Nishimura RA, Tajik AJ, Kyle RA (1988) Endomyocardial biopsy in 30 patients with primary amyloidosis and suspected cardiac involvement. Arch Intern Med 148:662–666

    Article  PubMed  CAS  Google Scholar 

  107. Kyle RA, Spencer RJ, Dahlin DC (1966) Value of rectal biopsy in the diagnosis of primary systemic amyloidosis. Am J Med Sci 251:501–506

    Article  PubMed  CAS  Google Scholar 

  108. Gafni J, Sohar E (1960) Rectal biopsy for the diagnosis of amyloidosis. Am J Med Sci 240:332–336

    Article  PubMed  CAS  Google Scholar 

  109. Westermark P, Stenkvist B (1973) A new method for the diagnosis of systemic amyloidosis. Arch Intern Med 132:522–523

    Article  PubMed  CAS  Google Scholar 

  110. Libbey CA, Skinner M, Cohen AS (1983) Use of abdominal fat tissue aspirate in the diagnosis of systemic amyloidosis. Arch Intern Med 143:1549–1552

    Article  PubMed  CAS  Google Scholar 

  111. Duston MA, Skinner M, Shirahama T, Cohen AS (1987) Diagnosis of amyloidosis by abdominal fat aspiration. Am J Med 82:412–414

    Article  PubMed  CAS  Google Scholar 

  112. Crotty TB, Li CY, Edwards WD, Suman VJ (1995) Amyloidosis and endomyocardial biopsy: correlation of extent and pattern of deposition with amyloid immunophenotype in 100 cases. Cardiovasc Pathol 4:39–42

    Article  Google Scholar 

  113. Smith RR, Hutchins GM (1979) Ischemic heart disease secondary to amyloidosis of intramyocardial arteries. Am J Cardiol 44:413–417

    Article  PubMed  CAS  Google Scholar 

  114. James TN (1966) Pathology of the cardiac conduction system in amyloidosis. Ann Intern Med 65:28–36

    Article  PubMed  CAS  Google Scholar 

  115. Ridolfi RL, Bulkley BH, Hutchins GM (1977) The conduction system in cardiac amyloidosis: clinical and pathologic features of 23 patients. Am J Med 62:677–686

    Article  PubMed  CAS  Google Scholar 

  116. Migrino RQ, Truran S, Gutterman DD et al (2011) Human microvascular dysfunction and apoptotic injury induced by AL amyloidosis light chain proteins. Am J Physiol Heart Circ Physiol 301:H2305–H2312

    Article  PubMed  CAS  Google Scholar 

  117. Abdelmoneim SS, Bernier M, Bellavia D et al (2008) Myocardial contrast echocardiography in biopsy-proven primary cardiac amyloidosis. Eur J Echocardiogr 9:338–341

    Article  PubMed  Google Scholar 

  118. Al Suwaidi J, Velianou JL, Gertz MA et al (1999) Systemic amyloidosis presenting with angina pectoris. Ann Intern Med 131:838–841

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Crea .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Crea, F., Lanza, G.A., Camici, P.G. (2014). CMD in Myocardial Diseases. In: Coronary Microvascular Dysfunction. Springer, Milano. https://doi.org/10.1007/978-88-470-5367-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5367-0_5

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5366-3

  • Online ISBN: 978-88-470-5367-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics