Skip to main content

Methods to Assess Coronary Microvascular Function

  • Chapter
  • First Online:
Coronary Microvascular Dysfunction

Abstract

This chapter reviews the main noninvasive (TTDE, myocardial contrast echocardiography, PET, and CMR) and invasive (thermodilution, gas wash-out method, intracoronary Doppler recording) methods and techniques proposed to assess coronary microvascular function in the clinical setting and to identify the various mechanisms of CMD. Pros and cons of each method are discussed and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lanza GA, Camici PG, Galiuto L et al (2013) Gruppo di Studio di Fisiopatologia Coronarica e Microcircolazione, Società Italiana di Cardiologia. Methods to investigate coronary microvascular function in clinical practice. J Cardiovasc Med 14:1–18

    Article  Google Scholar 

  2. Escaned J, Flores A, García-Pavía P et al (2009) Assessment of microcirculatory remodeling with intracoronary flow velocity and pressure measurements: validation with endomyocardial sampling in cardiac allografts. Circulation 120:1561–1568

    Article  PubMed  CAS  Google Scholar 

  3. Richardson PJ, Livesley B, Oram S, Olsen EGJ, Armstrong P (1974) Angina pectoris with normal coronary arteries. Transvenous myocardial biopsy in diagnosis. Lancet 2:677–680

    Article  PubMed  CAS  Google Scholar 

  4. Chilian WM (1997) Coronary microcirculation in health and disease. Summary of an NHLBI workshop. Circulation 95:522–528

    Google Scholar 

  5. Leung DY, Leung M (2011) Non-invasive/invasive imaging: significance and assessment of coronary microvascular dysfunction. Heart 97:587–595

    Article  PubMed  Google Scholar 

  6. Marzilli M, Sambuceti G, Fedele S, L’Abbate A (2000) Coronary microcirculatory vasoconstriction during ischemia in patients with unstable angina. J Am Coll Cardiol 35:327–334

    Article  PubMed  CAS  Google Scholar 

  7. Pries AR, Habazettl H, Ambrosio G et al (2008) A review of methods for assessment of coronary microvascular disease in both clinical and experimental settings. Cardiovasc Res 80:165–174

    Article  PubMed  CAS  Google Scholar 

  8. Webb CM, Collins P, Di Mario C (2005) Normal coronary physiology assessed by intracoronary Doppler ultrasound. Herz 30:8–16

    Article  PubMed  Google Scholar 

  9. McGuinness ME, Talbert RL (1994) Pharmacologic stress testing: experience with dipyridamole, adenosine, and dobutamine. Am J Hosp Pharm 51:328–346

    PubMed  CAS  Google Scholar 

  10. Chareonthaitawee P, Kaufmann PA, Rimoldi O, Camici PG (2001) Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans. Cardiovasc Res 50:151–161

    Article  PubMed  CAS  Google Scholar 

  11. Münzel T, Sinning C, Post F, Warnholtz A, Schulz E (2008) Pathophysiology, diagnosis and prognostic implications of endothelial dysfunction. Ann Med 40:180–196

    Article  PubMed  CAS  Google Scholar 

  12. Egashira K, Hirooka Y, Kai H et al (1994) Reduction in serum cholesterol with pravastatin improves endothelium-dependent coronary vasomotion in patients with hypercholesterolemia. Circulation 89:2519–2524

    Article  PubMed  CAS  Google Scholar 

  13. Sanderson JE, Woo KS, Chung HK, Chan WM, Tse KK, White HD (1997) Endothelium-dependent dilation of the coronary arteries in syndrome X: effects of the cold pressor test. Cardiology 88:414–417

    Article  PubMed  CAS  Google Scholar 

  14. Kiviniemi T (2008) Assessment of coronary blood flow and the reactivity of the microcirculation non-invasively with transthoracic echocardiography. Clin Physiol Funct Imaging 28:145–155

    Article  PubMed  Google Scholar 

  15. Meimoun P, Tribouilloy C (2008) Non-invasive assessment of coronary flow and coronary flow reserve by transthoracic Doppler echocardiography: a magic tool for the real world. Eur J Echocardiogr 9:449–457

    Article  PubMed  Google Scholar 

  16. Pizzuto F, Voci P, Mariano E, Puddu PE, Sardella G, Nigri A (2001) Assessment of flow velocity reserve by transthoracic Doppler echocardiography and venous adenosine infusion before and after left anterior descending coronary artery stenting. J Am Coll Cardiol 38:155–162

    Article  PubMed  CAS  Google Scholar 

  17. Galderisi M, Cicala S, D’Errico A, de Divitiis O, de Simone G (2004) Nebivolol improves coronary flow reserve in hypertensive patients without coronary heart disease. J Hypertens 22:2201–2208

    Article  PubMed  CAS  Google Scholar 

  18. Hozumi T, Yoshida K, Akasaka T et al (1998) Noninvasive assessment of coronary flow velocity and coronary flow velocity reserve in the left anterior descending coronary artery by Doppler echocardiography: comparison with invasive technique. J Am Coll Cardiol 32:1251–1259

    Article  PubMed  CAS  Google Scholar 

  19. Hildick-Smith DJ, Maryan R, Shapiro LM (2002) Assessment of coronary flow reserve by adenosine transthoracic echocardiography: validation with intracoronary Doppler. J Am Soc Echocardiogr 15:984–990

    Article  PubMed  Google Scholar 

  20. Lethen H, Tries HP, Brechtken J, Kersting S, Lambertz H (2003) Comparison of transthoracic Doppler echocardiography to intracoronary Doppler guidewire measurements for assessment of coronary flow reserve in the left anterior descending artery for detection of restenosis after coronary angioplasty. Am J Cardiol 91:412–417

    Article  PubMed  Google Scholar 

  21. Ueno Y, Nakamura Y, Takashima H, Kinoshita M, Soma A (2002) Noninvasive assessment of coronary flow velocity and coronary flow velocity reserve in the right coronary artery by transthoracic Doppler echocardiography: comparison with intracoronary Doppler guidewire. J Am Soc Echocardiogr 15:1074–1079

    Article  PubMed  Google Scholar 

  22. Lethen H, Tries HP, Kersting S, Lambertz H (2003) Validation of noninvasive assessment of coronary flow velocity reserve in the right coronary artery. A comparison of transthoracic echocardiographic results with intracoronary Doppler flow wire measurements. Eur Heart J 24:1567–1575

    Article  PubMed  Google Scholar 

  23. Auriti A, Pristipino C, Cianfrocca C et al (2007) Distal left circumflex coronary artery flow reserve recorded by transthoracic Doppler echocardiography: a comparison with Doppler-wire. Cardiovasc Ultrasound 16(5):22

    Article  Google Scholar 

  24. Saraste M, Koskenvuo J, Knuuti J et al (2001) Coronary flow reserve: measurement with transthoracic Doppler echocardiography is reproducible and comparable with positron emission tomography. Clin Physiol 21:114–122

    Article  PubMed  CAS  Google Scholar 

  25. Sestito A, Lanza GA, Di Monaco A et al (2011) Relation between cardiovascular risk factors and coronary microvascular dysfunction in cardiac syndrome X. J Cardiovasc Med (Hagerstown) 12:322–327

    Article  Google Scholar 

  26. Otsuka R, Watanabe H, Hirata K et al (2001) Acute effects of passive smoking on the coronary circulation in healthy young adults. JAMA 286:436–441

    Article  PubMed  CAS  Google Scholar 

  27. Hozumi T, Eisenberg M, Sugioka K et al (2002) Change in coronary flow reserve on transthoracic Doppler echocardiography after a single high-fat meal in young healthy men. Ann Intern Med 136:523–528

    Article  PubMed  Google Scholar 

  28. Kiviniemi TO, Toikka JO, Koskenvuo JW et al (2007) Vasodilation of epicardial coronary artery can be measured with transthoracic echocardiography. Ultrasound Med Biol 33:362–370

    Article  PubMed  Google Scholar 

  29. Oe H, Hozumi T, Murata E et al (2008) Arachidonic acid and docosahexaenoic acid supplementation increases coronary flow velocity reserve in Japanese elderly individuals. Heart 94:316–321

    Article  PubMed  CAS  Google Scholar 

  30. Khan F, Patterson D, Belch JJ, Hirata K, Lang CC (2008) Relationship between peripheral and coronary function using laser Doppler imaging and transthoracic echocardiography. Clin Sci (Lond) 115:295–300

    Article  Google Scholar 

  31. Shiina Y, Funabashi N, Lee K et al (2009) Acute effect of oral flavonoid-rich dark chocolate intake on coronary circulation, as compared with non-flavonoid white chocolate, by transthoracic Doppler echocardiography in healthy adults. Int J Cardiol 131:424–429

    Article  PubMed  Google Scholar 

  32. Lethen H, Tries HP, Kersting S, Bramlage P, Lambertz H (2011) Improvement of coronary microvascular function after Angiotensin receptor blocker treatment with irbesartan in patients with systemic hypertension. J Clin Hypertens (Greenwich) 13:155–161

    Article  CAS  Google Scholar 

  33. Zhang X, Yang Y, Li Z, Ren H, Lin J, Wang L (2010) Noninvasive evaluation of coronary flow velocity reserve in homozygous familial hypercholesterolemia by transthoracic Doppler echocardiography. Echocardiography 27:985–989

    Article  PubMed  Google Scholar 

  34. Rigo F, Gherardi S, Galderisi M et al (2006) The prognostic impact of coronary flow-reserve assessed by Doppler echocardiography in non-ischaemic dilated cardiomyopathy. Eur Heart J 27:1319–1323

    Article  PubMed  Google Scholar 

  35. Cortigiani L, Rigo F, Gherardi S, Galderisi M, Sicari R, Picano E (2008) Prognostic implications of coronary flow reserve on left anterior descending coronary artery in hypertrophic cardiomyopathy. Am J Cardiol 102:1718–1723

    Article  PubMed  Google Scholar 

  36. Di Monaco A, Bruno I, Sestito A et al (2009) Cardiac adrenergic nerve function and microvascular dysfunction in patients with cardiac syndrome X. Heart 95:550–554

    Article  PubMed  Google Scholar 

  37. Barletta G, Del Pace S, Boddi M et al (2009) Abnormal coronary reserve and left ventricular wall motion during cold pressor test in patients with previous left ventricular ballooning syndrome. Eur Heart J 30:3007–3014

    Article  PubMed  Google Scholar 

  38. Senior R, Becher H, Monaghan M et al (2009) Contrast echocardiography: Evidence-based recommendations by European Association of Echocardiography. Eur J Echocardiogr 10:194–212

    Article  PubMed  Google Scholar 

  39. Muro T, Hozumi T, Watanabe H et al (2003) Assessment of myocardial perfusion abnormalities by intravenous myocardial contrast echocardiography with harmonic power Doppler imaging: comparison with positron emission tomography. Heart 89:145–149

    Article  PubMed  CAS  Google Scholar 

  40. Ito H, Tomooka T, Sakai N et al (1992) Lack of myocardial perfusion immediately after successful thrombolysis. A predictor of poor recovery of left ventricular function in anterior myocardial infarction. Circulation 85:1699–1705

    Article  PubMed  CAS  Google Scholar 

  41. Ito H, Tomooka T, Sakai N et al (1993) Time course of functional improvement in stunned myocardium in risk area in patients with reperfused anterior infarction. Circulation 87:355–362

    Article  PubMed  CAS  Google Scholar 

  42. Kamp O, Lepper W, Vanoverschelde JL et al (2001) Serial evaluation of perfusion defects in patients with a first acute myocardial infarction referred for primary PTCA using intravenous myocardial contrast echocardiography. Eur Heart J 22:1485–1495

    Article  PubMed  CAS  Google Scholar 

  43. Balcells E, Powers ER, Lepper W et al (2003) Detection of myocardial viability by contrast echocardiography in acute infarction predicts recovery of resting function and contractile reserve. J Am Coll Cardiol 41:827–833

    Article  PubMed  Google Scholar 

  44. Galiuto L, Lombardo A, Maseri A et al (2003) Temporal evolution and functional outcome of no reflow: sustained and spontaneously reversible patterns following successful coronary recanalisation. Heart 89:731–737

    Article  PubMed  CAS  Google Scholar 

  45. Bolognese L, Carrabba N, Parodi G, Santoro GM (2004) Impact of microvascular dysfunction on left ventricular remodeling and long-term clinical outcome after primary coronary angioplasty for acute myocardial infarction. Circulation 109:1121–1126

    Article  PubMed  Google Scholar 

  46. Agati L, Tonti G, Pedrizzetti G et al (2004) Clinical application of quantitative analysis in real-time MCE. Eur J Echocardiogr 5:S17–S23

    Article  PubMed  Google Scholar 

  47. Janardhanan R, Moon JC, Pennell DJ, Senior R (2005) Myocardial contrast echocardiography accurately reflects transmurality of myocardial necrosis and predicts contractile reserve after acute myocardial infarction. Am Heart J 149:355–362

    Article  PubMed  Google Scholar 

  48. Moir S, Haluska BA, Jenkins C, McNab D, Marwick TH (2005) Myocardial blood volume and perfusion reserve responses to combined dipyridamole and exercise stress: a quantitative approach to contrast stress echocardiography. J Am Soc Echocardiogr 18:1187–1193

    Article  PubMed  Google Scholar 

  49. Galiuto L, Garramone B, Burzotta F (2006) et al; REMEDIA Investigators. Thrombus aspiration reduces microvascular obstruction after primary coronary intervention: a myocardial contrast echocardiography substudy of the REMEDIA Trial. J Am Coll Cardiol 48:1355–1360

    Article  PubMed  Google Scholar 

  50. Trindade ML, Caldas MA, Tsutsui JM et al (2007) Determination of size and transmural extent of acute myocardial infarction by real-time myocardial perfusion echocardiography: a comparison with magnetic resonance imaging. J Am Soc Echocardiogr 20:126–135

    Article  PubMed  Google Scholar 

  51. Galiuto L, Garramone B, Scarà A, AMICI Investigators et al (2008) The extent of microvascular damage during myocardial contrast echocardiography is superior to other known indexes of post-infarct reperfusion in predicting left ventricular remodeling: results of the multicenter AMICI study. J Am Coll Cardiol 51:552–559

    Article  PubMed  Google Scholar 

  52. Abdelmoneim SS, Bernier M, Dhoble A, Mankad SV, Mulvagh SL (2008) Assessment of the vascularity of a left atrial mass using myocardial perfusion contrast echocardiography. Echocardiography 25:517–520

    Article  PubMed  Google Scholar 

  53. Hayat SA, Dwivedi G, Jacobsen A, Lim TK, Kinsey C, Senior R (2008) Effects of left bundle-branch block on cardiac structure, function, perfusion, and perfusion reserve: implications for myocardial contrast echocardiography versus radionuclide perfusion imaging for the detection of coronary artery disease. Circulation 117:1832–1841

    Article  PubMed  CAS  Google Scholar 

  54. Senior R, Monaghan M, Main ML, RAMP-1 and RAMP-2 Investigators et al (2009) Detection of coronary artery disease with perfusion stress echocardiography using a novel ultrasound imaging agent: two Phase 3 international trials in comparison with radionuclide perfusion imaging. Eur J Echocardiogr 10:26–35

    Article  PubMed  Google Scholar 

  55. Mansencal N, Revault-d’Allonnes L, Pelage JP, Farcot JC, Lacombe P, Dubourg O (2009) Usefulness of contrast echocardiography for assessment of intracardiac masses. Arch Cardiovasc Dis 102:177–183

    Article  PubMed  Google Scholar 

  56. Galiuto L, De Caterina AR, Porfidia A et al (2010) Reversible coronary microvascular dysfunction: a common pathogenetic mechanism in Apical Ballooning or Tako-Tsubo Syndrome. Eur Heart J 31:1319–1327

    Article  PubMed  Google Scholar 

  57. Lombardo A, Rizzello V, Galiuto L et al (2006) Assessment of resting perfusion defects in patients with acute myocardial infarction: Comparison of myocardial contrast echocardiography, combined first-pass/delayed contrast-enhanced magnetic resonance imaging and 99mTC-sestamibi SPECT. Int J Cardiovasc Imaging 22:417–428

    Article  PubMed  Google Scholar 

  58. Grayburn PA (2008) ‘‘Product safety’’ compromises patient safety (an unjustified black box warning on ultrasound contrast agents by the Food and Drug Administration). Am J Cardiol 101:892–893

    Article  PubMed  Google Scholar 

  59. Peng BH, Levin CS (2010) Recent development in PET instrumentation. Curr Pharm Biotechnol 11:555–571

    Article  PubMed  CAS  Google Scholar 

  60. Kaufmann PA, Camici PG (2005) Myocardial blood flow by PET: technical aspects and clinical applications. J Nucl Med 46:75–88

    PubMed  Google Scholar 

  61. Camici PG, Rimoldi OE (2009) The clinical value of myocardial blood flow measurement. J Nucl Med 50:1076–1087

    Article  PubMed  Google Scholar 

  62. Bergmann SR, Herrero P, Markham J, Weinheimer CJ, Walsh MN (1989) Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol 14:639–652

    Article  PubMed  CAS  Google Scholar 

  63. Araujo LI, Lammertsma AA, Rhodes CG et al (1991) Noninvasive quantification of regional myocardial blood flow in coronary artery disease with oxygen-15-labeled carbon dioxide inhalation and positron emission tomography. Circulation 83:875–885

    Article  PubMed  CAS  Google Scholar 

  64. Kaufmann PA, Gnecchi-Ruscone T, Yap JT, Rimoldi O, Camici PG (1999) Assessment of the reproducibility of baseline and hyperemic myocardial blood flow measurements with 15O-labeled water and PET. J Nucl Med 40:1848–1856

    PubMed  CAS  Google Scholar 

  65. Bellina CR, Parodi O, Camici P et al (1990) Simultaneous in vitro and in vivo validation of nitrogen-13-ammonia for the assessment of regional myocardial blood flow. J Nucl Med 31:1335–1343

    PubMed  CAS  Google Scholar 

  66. Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert H, Kuhl DE (1990) Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol 15:1032–1042

    Article  PubMed  CAS  Google Scholar 

  67. Krivokapich J, Smith GT, Huang SC et al (1989) 13N ammonia myocardial imaging at rest and with exercise in normal volunteers. Quantification of absolute myocardial perfusion with dynamic positron emission tomography. Circulation 80:1328–1337

    Article  PubMed  CAS  Google Scholar 

  68. Schindler TH, Schelbert HR, Quercioli A, Dilsizian V (2010) Cardiac PET Imaging for the Detection and Monitoring of Coronary Artery Disease and Microvascular Health. JACC Cardiovas Imaging 3:623–640

    Article  Google Scholar 

  69. Herrero P, Markham J, Shelton ME, Weinheimer CJ, Bergmann SR (1990) Noninvasive quantification of regional myocardial perfusion with rubidium-82 and positron emission tomography. Exploration of a mathematical model. Circulation 82:1377–1386

    Article  PubMed  CAS  Google Scholar 

  70. Scott NS, Le May MR, de Kemp R et al (2001) Evaluation of myocardial perfusion using rubidium-82 positron emission tomography after myocardial infarction in patients receiving primary stent implantation or thrombolytic therapy. Am J Cardiol 88:886–889

    Article  PubMed  CAS  Google Scholar 

  71. Schäfers KP, Spinks TJ, Camici PG et al (2002) Absolute quantification of myocardial blood flow with H(2)(15)O and 3-dimensional PET: an experimental validation. J Nucl Med 43:1031–1040

    PubMed  Google Scholar 

  72. Jerosch-Herold M, Seethamraju RT, Swingen CM, Wilke NM, Stillman AE (2004) Analysis of myocardial perfusion MRI. J Magn Reson Imaging 19:758–770

    Article  PubMed  Google Scholar 

  73. Hsu L, Groves DW, Aletras AH, Kellman P, Arai AE (2012) A fully quantitative pixel-wise measurement of myocardial blood flow using contrast-enhanced first-pass Cardiac Magnetic Resonance perfusion imaging: microsphere validation in dogs and feasibility study in humans. JACC Cardiovasc Imaging 5:154–166

    Article  PubMed  Google Scholar 

  74. Rosen BD, Lima JA, Nasir K et al (2006) Lower myocardial perfusion reserve is associated with decreased regional left ventricular function in asymptomatic participants of the multiethnic study of atherosclerosis. Circulation 114:289–297

    Article  PubMed  Google Scholar 

  75. Patel AR, Epstein FH, Kramer CM (2008) Evaluation of the microcirculation: advances in cardiac magnetic resonance perfusion imaging. J Nucl Cardiol 15:698–708

    Article  PubMed  Google Scholar 

  76. Avegliano G, Huguet M, Costabel JP et al (2011) Morphologic pattern of late gadolinium enhancement in Takotsubo cardiomyopathy detected by early cardiovascular magnetic resonance. Clin Cardiol 34:178–182

    Article  PubMed  Google Scholar 

  77. Petersen SE, Jerosch-Herold M, Hudsmith LE et al (2007) Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: new insights from multiparametric magnetic resonance imaging. Circulation 115:2418–2425

    Article  PubMed  Google Scholar 

  78. Hombach V, Merkle N, Torzewski J et al (2009) Electrocardiographic and cardiac magnetic resonance imaging parameters as predictors of a worse outcome in patients with idiopathic dilated cardiomyopathy. Eur Heart J 30:2011–2018

    Article  PubMed  Google Scholar 

  79. Panting JR, Gatehouse PD, Yang GZ et al (2002) Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med 346:1948–1953

    Article  PubMed  Google Scholar 

  80. Lanza GA, Buffon A, Sestito A et al (2008) Relation between stress-induced myocardial perfusion defects on cardiovascular magnetic resonance and coronary microvascular dysfunction in patients with cardiac syndrome X. J Am Coll Cardiol 51:466–472

    Article  PubMed  Google Scholar 

  81. Esposito G, Dellegrottaglie S, Chiariello M (2010) The extent of irreversible myocardial damage and the potential for left ventricular repair after primary percutaneous coronary intervention. Am Heart J 160(Suppl 6):S4–S10

    Article  PubMed  Google Scholar 

  82. Hombach V, Merkle N, Bernhard P, Rasche V, Rottbauer W (2010) Prognostic significance of cardiac magnetic resonance imaging: update 2010. Cardiol J 17:549–557

    PubMed  Google Scholar 

  83. Kim RJ, Fieno DS, Parrish TB et al (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100:1992–2002

    Article  PubMed  CAS  Google Scholar 

  84. Raman SV, Simonetti OP, Winner MW III, et al (2010) Cardiac magnetic resonance with edema imaging identifies myocardium at risk and predicts worse outcome in patients with non–ST-segment elevation acute coronary syndrome. J Am Coll Card 55:2480–2488

    Google Scholar 

  85. Plein S, Kozerke S, Suerder D et al (2008) High spatial resolution myocardial perfusion cardiac magnetic resonance for the detection of coronary artery disease. Eur Heart J 29:2148–2155

    Article  PubMed  Google Scholar 

  86. Plein S, Schwitter J, Suerder D, Greenwood JP, Boesiger P, Kozerke S (2008) k-Space and time sensitivity encoding accelerated myocardial perfusion MR imaging at 3.0 T: comparison with 1.5 T. Radiology 249:493–500

    Article  PubMed  Google Scholar 

  87. Hsu LY, Kellman P, Arai AE (2008) Nonlinear myocardial signal intensity correction improves quantification of contrast enhanced first-pass MR perfusion in humans. J Magn Reson Imaging 27:793–801

    Article  PubMed  Google Scholar 

  88. Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE (2007) Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology 242:647–649

    Article  PubMed  Google Scholar 

  89. Tong CY, Prato FS, Wisenberg G et al (1993) Techniques for the measurement of the local myocardial extraction efficiency for inert diffusible contrast agents such as gadopentate dimeglumine. Magn Reson Med 30:332–336

    Article  PubMed  CAS  Google Scholar 

  90. Tong CY, Prato FS, Wisenberg G et al (1993) Measurement of the extraction efficiency and distribution volume for Gd-DTPA in normal and diseased canine myocardium. Magn Reson Med 30:337–346

    Article  PubMed  CAS  Google Scholar 

  91. Zierler K (2000) Indicator dilution methods for measuring blood flow, volume, and other properties of biological systems: a brief history and memoir. Ann Biomed Eng 28:836–848

    Article  PubMed  CAS  Google Scholar 

  92. Jerosch-Herold M, Swingen C, Seethamraju RT (2002) Myocardial blood flow quantification with MRI by model-independent deconvolution. Med Phys 29:886–897

    Article  PubMed  Google Scholar 

  93. Marcus ML, Wilson RF, White CW (1987) Methods of measurement of myocardial blood flow in patients: a critical review. Circulation 76:245–253

    Article  PubMed  CAS  Google Scholar 

  94. Pijls NH, De Bruyne B, Smith L et al (2002) Coronary thermodilution to assess flow reserve: validation in humans. Circulation 105:2482–2486

    Article  PubMed  Google Scholar 

  95. Melikian N, Kearney MT, Thomas MR, De Bruyne B, Shah AM, MacCarthy PA (2007) A simple thermodilution technique to assess coronary endothelium-dependent microvascular function in humans: validation and comparison with coronary flow reserve. Eur Heart J 28:2188–2194

    Article  PubMed  Google Scholar 

  96. Kelm M, Strauer BE (2004) Coronary flow reserve measurements in hypertension. Med Clin N Am 88:99–113

    Article  PubMed  Google Scholar 

  97. Joye JD, Schulman DS (1997) Clinical application of coronary flow reserve using an intracoronary Doppler guide wire. Cardiol Clin 15:101–129

    Article  PubMed  CAS  Google Scholar 

  98. Tahk SJ, Choi BJ, Choi SY et al (2008) Distal protection device protects microvascular integrity during primary percutaneous intervention in acute myocardial infarction: a prospective, randomized, multicenter trial. Int J Cardiol 123:162–168

    Article  PubMed  Google Scholar 

  99. Spaan JA, Piek JJ, Hoffman JI, Siebes M (2006) Physiological basis of clinically used coronary hemodynamic indices. Circulation 113:446–455

    Article  PubMed  Google Scholar 

  100. Knaapen P, Camici PG, Marques KM et al (2009) Coronary microvascular resistance: methods for its quantification in humans. Basic Res Cardiol 104:485–498

    Article  PubMed  Google Scholar 

  101. Fearon WF, Balsam LB, Farouque HM et al (2003) Novel index for invasively assessing the coronary microcirculation. Circulation 107:3129–3132

    Article  PubMed  Google Scholar 

  102. Kolyva C, Spaan JA, Piek JJ, Siebes M (2008) Windkesselness of coronary arteries hampers assessment of human coronary wave speed by single-point technique. Am J Physiol Heart Circ Physiol 295:H482–H490

    Article  PubMed  CAS  Google Scholar 

  103. Gibson CM, Murphy S, Menown IB et al (1999) Determinants of coronary blood flow after thrombolytic administration. TIMI Study Group. Thrombolysis in Myocardial Infarction. J Am Coll Cardiol 34:1403–1412

    Google Scholar 

  104. Molloi S, Ersahin A, Tang J, Hicks J, Leung CY (1996) Quantification of volumetric coronary blood flow with dual-energy digital subtraction angiography. Circulation 93:1919–1927

    Article  PubMed  CAS  Google Scholar 

  105. Zhang Z, Takarada S, Molloi S (2011) Quantification of coronary microvascular resistance using angiographic images for volumetric blood flow measurement: in vivo validation. Am J Physiol Heart Circ Physiol 300:2096–2104

    Article  CAS  Google Scholar 

  106. Porto I, Hamilton-Craig C, Brancati M, Burzotta F, Galiuto L, Crea F (2010) Angiographic assessment of microvascular perfusion–myocardial blush in clinical practice. Am Heart J 160:1015–1022

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Crea .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Crea, F., Lanza, G.A., Camici, P.G. (2014). Methods to Assess Coronary Microvascular Function. In: Coronary Microvascular Dysfunction. Springer, Milano. https://doi.org/10.1007/978-88-470-5367-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5367-0_3

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5366-3

  • Online ISBN: 978-88-470-5367-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics