Skip to main content

Treatment of CMD in Obstructive CAD

  • Chapter
  • First Online:
Coronary Microvascular Dysfunction

Abstract

Among patients with obstructive CAD, improvement of coronary microvascular function has mainly been attempted in two conditions, i.e., refractory angina and MVO. In refractory angina patients, therapies have been directed to stimulate collateral circulation, and have included angiogenic treatment, enhanced external counterpulsation, and exercise. Several forms of therapy have also been attempted to prevent or treat MVO in the setting of STEMI, including pharmacological (e.g., adenosine, nitroprusside) and nonpharmacological (e.g., antiembolic devices, ischemic conditioning) tools. This chapter discusses the main results observed with these interventions in these clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chilian WM, Penn MS, Pung YF et al (2012) Coronary collateral growth–back to the future. J Mol Cell Cardiol 52:905–911

    Article  PubMed  CAS  Google Scholar 

  2. Grines CL, Watkins MW, Mahmarian JJ et al (2003) A randomized, double-blind, placebo-controlled trial of Ad5FGF-4 gene therapy and its effect on myocardial perfusion in patients with stable angina. J Am Coll Cardiol 42:1339–1347

    Article  PubMed  CAS  Google Scholar 

  3. Henry TD, Grines CL, Watkins MW et al (2007) Effects of Ad5FGF-4 in patients with angina: an analysis of pooled data from the AGENT-3 and AGENT-4 trials. J Am Coll Cardiol 50:1038–1046

    Article  PubMed  CAS  Google Scholar 

  4. Teng CJ, Lachapelle K, Chiu RC (2005) Reappraisal of recent clinical trials of angiogenic therapy in myocardial ischemia. Asian Cardiovasc Thorac Ann 13:90–97

    Article  PubMed  Google Scholar 

  5. Henry TD, Annex BH, McKendall GR et al (2003) The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 107:1359–1365

    Article  PubMed  CAS  Google Scholar 

  6. Losordo DW, Schatz RA, White CJ et al (2007) Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation 115:3165–3172

    Article  PubMed  Google Scholar 

  7. Tse HF, Thambar S, Kwong YL et al (2007) Prospective randomized trial of direct endomyocardial implantation of bone marrow cells for treatment of severe coronary artery diseases (PROTECT-CAD trial). Eur Heart J 28:2998–3005

    Article  PubMed  Google Scholar 

  8. van Ramshorst J, Bax JJ, Beeres SL et al (2009) Intramyocardial bone marrow cell injection for chronic myocardial ischemia: a randomized controlled trial. JAMA 301:1997–2004

    Article  PubMed  Google Scholar 

  9. Losordo DW, Henry TD, Davidson C et al (2011) Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ Res 109:428–436

    Article  PubMed  CAS  Google Scholar 

  10. Denenberg DL (1972) The effects of exercise on the coronary collateral circulation. J Sports Med Phys Fit 12:76–81

    CAS  Google Scholar 

  11. Cohen MV, Yipintsoi T, Malhotra A, Penpargkul S, Scheuer J (1978) Effect of exercise on collateral development in dogs with normal coronary arteries. J Appl Physiol 45:797–805

    PubMed  CAS  Google Scholar 

  12. Neill WA, Oxendine JM (1979) Exercise can promote coronary collateral development without improving perfusion of ischemic myocardium. Circulation 60:1513–1519

    Article  PubMed  CAS  Google Scholar 

  13. Scheel KW, Ingram LA, Wilson JL (1981) Effects of exercise on the coronary and collateral vasculature of beagles with and without coronary occlusion. Circ Res 48:523–530

    Article  PubMed  CAS  Google Scholar 

  14. Roth DM, White FC, Nichols ML, Dobbs SL, Longhurst JC, Bloor CM (1990) Effect of longterm exercise on regional myocardial function and coronary collateral development after gradual coronary artery occlusion in pigs. Circulation 82:1778–1789

    Article  PubMed  CAS  Google Scholar 

  15. Pagonas N, Utz W, Schulz-Menger J et al (2010) Assessment of the effect of external counterpulsation on myocardial adaptive arteriogenesis by invasive functional measurements—design of the arteriogenesis network trial 2. Int J Cardiol 145:432–437

    Article  PubMed  Google Scholar 

  16. Wu E, Mårtensson J, Broström A (2012) Enhanced external counterpulsation in patients with refractory angina pectoris: a pilot study with six months follow-up regarding physical capacity and health-related quality of life. Eur J Cardiovasc Nurs [Epub ahead of print]

    Google Scholar 

  17. Arora RR, Chou TM, Jain D et al (1999) The multicenter study of enhanced external counterpulsation (MUST-EECP): effect of EECP on exercise-induced myocardial ischemia and anginal episodes. J Am Coll Cardiol 33:1833–1840

    Article  PubMed  CAS  Google Scholar 

  18. Ren B, Deng Y, Mukhopadhyay A et al (2010) ERK1/2-Akt1 crosstalk regulates arteriogenesis in mice and zebrafish. J Clin Invest 120:1217–1228

    Article  PubMed  CAS  Google Scholar 

  19. Collet JP, Montalescot G (2005) The acute reperfusion management of STEMI in patients with impaired glucose tolerance and type 2 diabetes. Diabetes Vasc Dis Res 2:136–143

    Article  Google Scholar 

  20. Golino P, Maroko PR, Carew TE (1987) The effect of acute hypercholesterolemia on myocardial infarct size and the no-reflow phenomenon during coronary occlusion-reperfusion. Circulation 75:292–298

    Article  PubMed  CAS  Google Scholar 

  21. Tomai F, Crea F, Gaspardone A et al (1994) Ischemic preconditioning during coronary angioplasty is prevented by glibenclamide, a selective ATP-sensitive Kchannel blocker. Circulation 90:700–705

    Article  PubMed  CAS  Google Scholar 

  22. Niccoli G, Altamura L, Fabretti A et al (2008) Ethanol abolishes ischemic preconditioning in humans. J Am Coll Cardiol 51:271–275

    Article  PubMed  CAS  Google Scholar 

  23. Schramm TK, Gislason GH, Vaag A et al (2011) Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes, with or without a previous myocardial infarction: a nationwide study. Eur Heart J 32:1900–1908

    Article  PubMed  CAS  Google Scholar 

  24. Klein LW, Kern MG, Berger P et al (2003) Interventional cardiology committee of the society of cardiac angiography and interventions. Society of cardiac angiography and interventions: suggested management of the no-reflow phenomenon in the cardiac catheterization laboratory. Catheter Cardiovasc Interv 60:194–201

    Article  PubMed  Google Scholar 

  25. Mauri L, Rogers C, Baim DS (2006) Devices for distal protection during percutaneous coronary revascularization. Circulation 113:2651–2656

    Article  PubMed  Google Scholar 

  26. Limbruno U, Micheli A, De Carlo M et al (2003) Mechanical prevention of distal embolization during primary angioplasty: safety, feasibility, and impact on myocardial reperfusion. Circulation 108:171–176

    Article  PubMed  Google Scholar 

  27. Stone GW, Webb J, Cox DA et al (2005) Enhanced myocardial efficacy and recovery by aspiration of liberated debris (EMERALD) investigators. Distal microcirculatory protection during percutaneous coronary intervention in acute ST-segment elevation myocardial infarction: a randomized controlled trial. JAMA 293:1063–1072

    Article  PubMed  CAS  Google Scholar 

  28. Kunadian BDJ, Vijayalakshmi K, Thornley AR, de Belder MA (2007) Meta-analysis of randomized trials comparing anti-embolic devices with standard PCI for improving myocardial reperfusion in patients with acute myocardial infarction. Catheter Cardiovasc Interv 69:488–496

    Article  PubMed  Google Scholar 

  29. Gick M, Jander N, Bestehorn HP et al (2005) Randomized evaluation of the effects of filter-based distal protection on myocardial perfusion and infarct size after primary percutaneous catheter intervention in myocardial infarction with and without ST-segment elevation. Circulation 112:1462–1469

    Article  PubMed  Google Scholar 

  30. De Luca G, Suryapranata H, Stone GW, Antoniucci D, Neumann FJ, Chiariello M (2007) Adjunctive mechanical devices to prevent distal embolization in patients undergoing mechanical revascularization for acute myocardial infarction: a meta-analysis of randomized trials. Am Heart J 153:343–353

    Article  PubMed  Google Scholar 

  31. Schomig A, Kastrati A (2005) Distal embolic protection in patients with acute myocardial infarction attractive concept but no evidence of benefit. JAMA 293:1116–1118

    Article  PubMed  CAS  Google Scholar 

  32. Burzotta F, Trani C, Romagnoli E et al (2005) Manual thrombus-aspiration improves myocardial reperfusion: therandomized evaluation of the effect of mechanical reduction of distal embolization by thrombus-aspiration in primary and rescue angioplasty (REMEDIA) trial. J Am Coll Cardiol 46:371–376

    Article  PubMed  Google Scholar 

  33. Silva-Orrego P, Colombo P, Bigi R et al (2006) Thrombus aspiration before primary angioplasty improves myocardial reperfusion in acute myocardial infarction: the DEAR-MI (dethrombosis to enhance acute reperfusion in myocardial infarction) study. J Am Coll Cardiol 48:1552–1559

    Article  PubMed  Google Scholar 

  34. Vlaar PJ, Svilaas T, van der Horst IC et al (2008) Cardiac death and reinfarction after 1 year in the thrombus aspiration during percutaneous coronary intervention in acute myocardial infarction study (TAPAS): a 1-year follow-up study. Lancet 371:1915–1920

    Article  PubMed  Google Scholar 

  35. Svilaas T, Vlaar PJ, van der Horst IC et al (2008) Thrombus aspiration during primary percutaneous coronary intervention. N Engl J Med 358:557–567

    Article  PubMed  CAS  Google Scholar 

  36. Stone GW, Maehara A, Witzenbichler B et al (2012) INFUSE-AMI investigators. Intracoronary abciximab and aspiration thrombectomy in patients with large anterior myocardial infarction: the INFUSE-AMI randomized trial. JAMA 307:1817–1826

    Article  PubMed  CAS  Google Scholar 

  37. Steg PG, James SK, Atar D et al (2012) Task force on the management of ST-segment elevation acute myocardial infarction of the European society of cardiology (ESC). ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 33:2569–2619

    Article  PubMed  CAS  Google Scholar 

  38. Kunichika H, Ben-Yehuda O, Lafitte S, Kunichika N, Peters B, DeMaria AN (2004) Effects of glycoprotein IIb/IIIa inhibition on microvascular flow after coronary reperfusion: a quantitative myocardial contrast echocardiography study. J Am Coll Cardiol 43:276–283

    Article  PubMed  CAS  Google Scholar 

  39. Neumann FJ, Blasini R, Schmitt C et al (1998) Effect of glycoprotein IIb/IIIa receptor blockade on recovery of coronary flow and left ventricular function after the placement of coronary-artery stents in acutemyocardial infarction. Circulation 98:2695–2701

    Article  PubMed  CAS  Google Scholar 

  40. Investigators EPIC (1994) Use of a monoclonal antibody directed against the platelet glycoprotein IIb/IIIa receptor in high-risk coronary angioplasty. N Engl J Med 330:956–961

    Article  Google Scholar 

  41. EPILOG Investigators (1997) Platelet glycoprotein IIb/IIIa receptor blockade and low-dose heparin during percutaneous coronary revascularization. N Engl J Med 336:1689−1696

    Google Scholar 

  42. Montalescot G, Antoniucci D, Kastrati A et al (2007) Abciximab in primary coronary stenting of ST-elevation myocardial infarction: a European meta-analysis on individual patients’ data with long-term follow-up. Eur Heart J 28:443–449

    Article  PubMed  CAS  Google Scholar 

  43. Boersma E, Harrington RA, Moliterno DJ et al (2002) Platelet glycoprotein IIb/IIIa inhibitors in acute coronary syndromes: a meta-analysis of all major randomised clinical trials. Lancet 359:189–198

    Article  PubMed  CAS  Google Scholar 

  44. Roffi M, Chew DP, Mukherjee D et al (2002) Platelet glycoprotein IIb/IIIa inhibition in acute coronary syndromes. Gradient of benefit related to the revascularization strategy. Eur Heart J 23:1441–1448

    Article  PubMed  CAS  Google Scholar 

  45. Thiele H, Schindler K, Friedenberger J et al (2008) Intracoronary compared with intravenous bolus abciximab application in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention: the randomized Leipzig immediate percutaneous coronary intervention abciximab IV versus IC in ST-elevation myocardial infarction trial. Circulation 118:49–57

    Article  PubMed  CAS  Google Scholar 

  46. Stone GW, Webb J, Cox DA et al (2005) Distal microcirculatory protection during percutaneous coronary intervention in acute ST-segment elevation myocardial infarction: a randomized controlled trial. JAMA 293:1063–1072

    Article  PubMed  CAS  Google Scholar 

  47. Thiele H, Rach J, Klein N et al, LIPSIA-NSTEMI Trial Group (2012). Optimal timing of invasive angiography in stable non-ST-elevation myocardial infarction: the Leipzig Immediate versus early and late PercutaneouS coronary Intervention triAl in NSTEMI (LIPSIA-NSTEMI Trial). Eur Heart J 33:2035–2043

    Article  PubMed  Google Scholar 

  48. De Luca G, Navarese E, Marino P (2009) Risk profile and benefits from Gp IIb-IIIa inhibitors among patients with ST-segment elevation myocardial infarction treated with primary angioplasty: a meta-regression analysis of randomized trials. Eur Heart J 30:2705–2713

    Article  PubMed  Google Scholar 

  49. Marzilli M, Orsini E, Marraccini P, Testa R (2000) Beneficial effects of intracoronary adenosine as an adjunct to primary angioplasty in acute myocardial infarction. Circulation 101:2154–2159

    Article  PubMed  CAS  Google Scholar 

  50. Mahaffey KW, Puma JA, Barbagelata NA et al (1999) Adenosine as an adjunct to thrombolytic therapy for acute myocardial infarction: results of a multicenter, randomized, placebo-controlled trial: the acute myocardial infarction study of adenosine (AMISTAD) trial. J Am Coll Cardiol 34:1711–1720

    Article  PubMed  CAS  Google Scholar 

  51. Ross AM, Gibbons RJ, Stone GW, Kloner RA, Alexander RW (2005) A randomized, double-blinded, placebo-controlled multicenter trial of adenosine as an adjunct to reperfusion in the treatment of acute myocardial infarction (AMISTAD-II). J Am Coll Cardiol 45:1775–1780

    Article  PubMed  CAS  Google Scholar 

  52. Micari A, Belcik TA, Balcells EA et al (2005) Improvement in microvascular reflow and reduction of infarct size with adenosine in patients undergoing primary coronary stenting. Am J Cardiol 96:1410–1415

    Article  PubMed  CAS  Google Scholar 

  53. Niccoli G, Rigattieri S, De Vita MR et al (2013) Open-label, randomized, placebo controlled evaluation of intracoronary adenosine or nitroprusside after thrombus aspiration during primary percutaneous coronary intervention for the prevention of microvascular obstruction in acute myocardial infarction: the REOPEN-AMI study. JACC Cardiovasc Interv 6:580–589

    Google Scholar 

  54. Hillegass WB, Dean NA, Liao L, Rhinehart RG, Myers PR (2001) Treatment of no-reflow and impaired flow with the nitric oxide donor nitroprusside following percutaneous coronary interventions: initial human clinical experience. J Am Coll Cardiol 37:1335–1343

    Article  PubMed  CAS  Google Scholar 

  55. Pasceri V, Pristipino C, Pelliccia F et al (2005) Effects of the nitric oxide donor nitroprusside on no-reflow phenomenon during coronary interventions for acute myocardial infarction. Am J Cardiol 95:1358–1361

    Article  PubMed  CAS  Google Scholar 

  56. Reddy R, Mukherjee S, Walton AW et al (2005) Sodium nitroprusside is an effective treatment for no-reflow during percutaneous intervention for acute myocardial infarction. Heart Lung Circ 14(S1):S138

    Google Scholar 

  57. Resnic FS, Wainstein M, Lee MK et al (2003) No-reflow is an independent predictor of death and myocardial infarction after percutaneous coronary intervention. Am Heart J 145:42–46

    Article  PubMed  Google Scholar 

  58. Amit G, Cafri C, Yaroslavtsev S et al (2006) Intracoronary nitroprusside for the prevention of the no-reflow phenomenon after primary percutaneous coronary intervention in acute myocardial infarction. A randomized, double-blind, placebo-controlled clinical trial. Am Heart J 152:887

    Article  PubMed  Google Scholar 

  59. Jaffe R, Charron T, Puley G, Dick A, Strauss BH (2008) Microvascular obstruction and the no-reflow phenomenon after percutaneous coronary intervention. Circulation 117:3152–3156

    Article  PubMed  Google Scholar 

  60. Dagenais MDF, Cartier MDR, Hollmann RNC, Buluran BSJ (1997) Calciumchannel blockers preserve coronary endothelial reactivity after ischemia-reperfusion. Ann Thorac Surg 63:1050–1056

    Article  PubMed  CAS  Google Scholar 

  61. Villari B, Ambrosio G, Golino P et al (1993) The effects of calcium channel antagonist treatment and oxygen radical scavenging on infarct size and the no-reflow phenomenon in reperfused hearts. Am Heart J 125:11–23

    Article  PubMed  CAS  Google Scholar 

  62. Hang CL, Wang CP, Yip HK et al (2005) Early administration of intracoronary verapamil improves myocardial perfusion during percutaneous coronary interventions for acute myocardial infarction. Chest 128:2593–2598

    Article  PubMed  CAS  Google Scholar 

  63. Abbo KM, Dooris M, Glazier S et al (1995) Features and outcome of no-reflow after percutaneous coronary intervention. Am J Cardiol 75:778–782

    Article  PubMed  CAS  Google Scholar 

  64. Piana RN, Paik GY, Moscucci M et al (1994) Incidence and treatment of ‘no-reflow’ after percutaneous coronary intervention. Circulation 89:2514–2518

    Article  PubMed  CAS  Google Scholar 

  65. Mizumura T, Nithipatikom K, Gross GJ (1995) Effects of nicorandil and glyceryl trinitrate on infarct size, adenosine release, and neutrophil infiltration in the dog. Cardiovasc Res 29:482–489

    PubMed  CAS  Google Scholar 

  66. Ikeda N, Yasu T, Kubo N et al (2004) Nicorandil versus isosorbide dinitrate as adjunctive treatment to direct balloon angioplasty in acute myocardial infarction. Heart 90:181–185

    Article  PubMed  CAS  Google Scholar 

  67. Ono H, Osanai T, Ishizaka H et al (2004) Nicorandil improves cardiac function and clinical outcome in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention: role of inhibitory effect on reactive oxygen species formation. Am Heart J 148:E15

    Article  PubMed  Google Scholar 

  68. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group (1988) Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. Lancet 2:349−360

    Google Scholar 

  69. The Gusto Investigators (1993) An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction. N Engl J Med 329:673–682

    Article  Google Scholar 

  70. Crouch MA, Nappi JM (1997) Adjunctive intracoronary thrombolysis in complicated coronary angioplasty. Ann Pharmacother 31:1244–1246

    PubMed  CAS  Google Scholar 

  71. Sezer M, Okcular I, Goren T et al (2007) Association of haematological indices with the degree of microvascular injury in patients with acute anterior wall myocardial infarction treated with primary percutaneous coronary intervention. Heart 93:313–318

    Article  PubMed  Google Scholar 

  72. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    Article  PubMed  CAS  Google Scholar 

  73. Zhao ZQ, Corvera JS, Halkos ME et al (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285:H579–H588

    PubMed  CAS  Google Scholar 

  74. Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM (2004) Postconditioning: a form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res 95:230–232

    Article  PubMed  CAS  Google Scholar 

  75. Nakano A, Cohen MV, Downey JM (2000) Ischemic preconditioning: from basic mechanisms to clinical applications. Pharmacol Ther 86:263–275

    Article  PubMed  CAS  Google Scholar 

  76. Hausenloy DJ, Yellon DM (2007) Preconditioning and postconditioning: united at reperfusion. Pharmacol Ther 116:173–191

    Article  PubMed  CAS  Google Scholar 

  77. Battipaglia I, Scalone G, Milo M, Di Franco A, Lanza GA, Crea F (2011) Upper arm intermittent ischaemia reduces exercise-related increase of platelet reactivity in patients with obstructive coronary artery disease. Heart 97:1298–1303

    Article  PubMed  Google Scholar 

  78. Deutsch E, Berger M, Kussmaul WG, Hirshfeld JW Jr, Herrmann HC, Laskey WK (1990) Adaptation to ischemia during percutaneous transluminal coronary angioplasty. Clinical, hemodynamic, and metabolic features. Circulation 82:2044–2051

    Article  PubMed  CAS  Google Scholar 

  79. Kloner RA, Shook T, Przyklenk K et al (1995) 4 Investigators. Previous angina alters in-hospital outcome in TIMI 4: a clinical correlate to preconditioning? Circulation 91:37–45

    Article  PubMed  CAS  Google Scholar 

  80. Staat P, Rioufol G, Piot C et al (2005) Postconditioning the human heart. Circulation 112:2143–2148

    Article  PubMed  Google Scholar 

  81. Thibault H, Piot C, Staat P et al (2008) Long term benefit of postconditioning. Circulation 117:1037–1044

    Article  PubMed  CAS  Google Scholar 

  82. Bøtker HE, Kharbanda R, Schmidt MR et al (2010) Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet 375:727–734

    Article  PubMed  Google Scholar 

  83. Hausenloy DJ, Yellon DM (2008) Time to take myocardial reperfusion injury seriously. N Engl J Med 359:518–520

    Article  PubMed  CAS  Google Scholar 

  84. Piot C, Croisille P, Staat P et al (2008) Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med 359:473–481

    Article  PubMed  CAS  Google Scholar 

  85. Mewton N, Croisille P, Gahide G et al (2010) Effect of cyclosporine on left ventricular remodeling after reperfused myocardial infarction. J Am Coll Cardiol 55:1200–1205

    Article  PubMed  CAS  Google Scholar 

  86. Kitakaze M, Asakura M, Kim J et al (2007) J-WIND investigators. Human atrial natriuretic peptide and nicorandil as adjuncts to reperfusion treatment for acute myocardial infarction (J-WIND): two randomised trials. Lancet 370:1483–1493

    Article  PubMed  CAS  Google Scholar 

  87. Galiuto L, DeMaria AN, Del Balzo U et al (2000) Ischemia-reperfusion injury at the microvascular level: treatment by endothelin A-selective antagonist and evaluation by myocardial contrast echocardiography. Circulation 102:3111–3116

    Article  PubMed  CAS  Google Scholar 

  88. Chiariello M, Golino P, Cappelli-Bigazzi M, Ambrosio G, Tritto I, Salvatore M (1988) Reduction in infarct size by the prostacyclin analogue iloprost (ZK 36374) after experimental coronary artery occlusion-reperfusion. Am Heart J 115:499–504

    Article  PubMed  CAS  Google Scholar 

  89. Byrne JG, Appleyard RF, Sun SC et al (1993) Cardiac-derived thromboxane A2. An initiating mediator of reperfusion injury? J Thorac Cardiovasc Surg 105:689–693

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Crea .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Crea, F., Lanza, G.A., Camici, P.G. (2014). Treatment of CMD in Obstructive CAD. In: Coronary Microvascular Dysfunction. Springer, Milano. https://doi.org/10.1007/978-88-470-5367-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5367-0_10

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5366-3

  • Online ISBN: 978-88-470-5367-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics