Skip to main content

Physiology of Coronary Microcirculation

  • Chapter
  • First Online:

Abstract

In this first chapter of the book, we discuss the functional anatomy and provide an in-depth description of the physiology of coronary microcirculation. The various intrinsic (i.e., vascular) and extrinsic (extravascular) physiologic mechanisms involved in the fine regulation of myocardial blood flow (MBF) are described. We then discuss the general principles responsible for the adaptation of MBF to various physiological and pathological conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Shear stress of blood flow (τ) is calculated as: τ = µ(θuy), where µ is blood viscosity, u blood flow velocity and y the distance from the vessel wall, with θuy representing the local shear velocity.

References

  1. Klassen GA, Armour JA, Garner JB (1987) Coronary circulatory pressure gradient. Can J Physiol Pharmacol 65:520–531

    Article  PubMed  CAS  Google Scholar 

  2. Chillian WM, Layne SM, Klausner EC, Eastham CL, Marcus ML (1989) Redistribution of coronary microvascular resistance produced by dipyridamole. Am J Physiol 256:H383–H389

    Google Scholar 

  3. Crea F, Gaspardone A, Araujo L et al (1994) Effects of aminophylline on cardiac function and regional myocardial perfusion: implication regarding its antiischemic action. Am Heart J 127:817–824

    Article  PubMed  CAS  Google Scholar 

  4. Prinzen FW, Bassingthwaighte JB (2000) Blood flow distributions by microsphere deposition methods. Cardiovasc Res 45:13–21

    Article  PubMed  CAS  Google Scholar 

  5. Ganz W, Tamura K, Marcus HS et al (1971) Measurement of coronary sinus blood flow by continuous thermodilution in man. Circulation 44:181–195

    Article  PubMed  CAS  Google Scholar 

  6. Hartley CJ, Cole JS (1974) An ultrasonic pulsed Doppler system for measuring blood flow in small vessels. J Appl Physiol 37:626–629

    PubMed  CAS  Google Scholar 

  7. Cole JS, Hartley CJ (1977) The pulsed Doppler coronary artery catheter preliminary report of a new technique for measuring rapid changes in coronary artery flow velocity in man. Circulation 56:18–25

    Article  PubMed  CAS  Google Scholar 

  8. Rimoldi OE, Camici PG (2004) Positron emission tomography for quantitation of myocardial perfusion. J Nucl Cardiol 11:482–490

    Article  PubMed  Google Scholar 

  9. Lupi A, Buffon A, Finocchiaro ML, Conti E, Maseri A, Crea F (1997) Mechanisms of adenosine-induced epicardial coronary artery dilatation. Eur Heart J 18:614–617

    Article  PubMed  CAS  Google Scholar 

  10. Jones CJH, Kuo L, Davies MJ, Chilian WM (1995) Regulation of coronary blood flow: coordination of heterogeneous control mechanisms in vascular microdomains. Cardiovasc Res 29:585–596

    PubMed  CAS  Google Scholar 

  11. Duffy SJ, Castle SF, Harper RW, Meredith IT (1999) Contribution of vasodilator prostanoids and nitric oxide to resting flow, metabolic vasodilatation, and flow-mediated dilatation in human coronary circulation. Circulation 100:1951–1957

    Article  PubMed  CAS  Google Scholar 

  12. Vanhoutte PM (2003) Endothelial control of vasomotor function: from health to coronary disease. Circ J 67:572–575

    Article  PubMed  CAS  Google Scholar 

  13. FitzGerald GA, Smith B, Pedersen AK, Brash AR (1984) Increased prostacyclin biosynthesis in patients with severe atherosclerosis and platelet activation. N Engl J Med 310:1065–1068

    Article  PubMed  CAS  Google Scholar 

  14. Kuo L, Chilian WM, Davis MJ (1990) Coronary arteriolar myogenic response is independent of endothelium. Circ Res 66:860–866

    Article  PubMed  CAS  Google Scholar 

  15. Davis MJ, Donovitz JA, Hood JD (1992) Stretch-activated single-channel and whole cell currents in vascular smooth muscle cells. Am J Physiol 262:1083–1088

    Google Scholar 

  16. Heusch G, Baumgart D, Camici P et al (2000) Alpha-adrenergic coronary vasoconstriction and myocardial ischemia in humans. Circulation 101:689–694

    Article  PubMed  CAS  Google Scholar 

  17. Braunwald E (1971) Control of myocardial oxygen consumption: physiologic and clinical considerations. Am J Cardiol 27:416–432

    Article  PubMed  CAS  Google Scholar 

  18. Camici PG, Marraccini P, Marzilli M et al (1989) Coronary hemodynamics and myocardial metabolism during and after pacing stress in normal humans. Am J Physiol 257:E309–E317

    PubMed  CAS  Google Scholar 

  19. Deussen A, Ohanyan V, Jannasch A, Yin L, Chilian W (2012) Mechanisms of metabolic coronary flow regulation. J Mol Cell Cardiol 52:794–801

    Article  PubMed  CAS  Google Scholar 

  20. Feigl EO, Neat GW, Huang AH (1990) Interrelations between coronary artery pressure, myocardial metabolism and coronary blood flow. J Mol Cell Cardiol 22:375–390

    Article  PubMed  CAS  Google Scholar 

  21. Vretzakis G, Ferdi E, Papaziogas B et al (2004) Coronary sinus venoarterial CO2 difference in different hemodynamic states. Acta Anaesthesiol Belg 55:221–227

    PubMed  CAS  Google Scholar 

  22. Wexels JC, Myhre ES, Mjøs OD (1985) Effects of carbon dioxide and pH on myocardial blood-flow and metabolism in the dog. Clin Physiol 5:575–588

    Article  PubMed  CAS  Google Scholar 

  23. Feigl EO (1983) Coronary physiology. Physiol Rev 63:1–205

    PubMed  CAS  Google Scholar 

  24. Mustafa SJ, Mansour MM (1984) Effect of perfusate pH on coronary flow and adenosine release in isolated rabbit heart. Proc Soc Exp Biol Med 176:22–26

    Article  PubMed  CAS  Google Scholar 

  25. Saitoh S, Zhang C, Tune JD et al (2006) Hydrogen peroxide: a feed-forward dilator that couples myocardial metabolism to coronary blood flow. Arterioscler Thromb Vasc Biol 26:2614–2621

    Article  PubMed  CAS  Google Scholar 

  26. Zinkevich NS, Gutterman DD (2011) Role of mitochondrial reactive oxygen species on flow-induced dilation in human arterioles with coronary artery disease. FASEB 25:273

    Google Scholar 

  27. Beyer AM, Gutterman DD (2012) Regulation of the human coronary microcirculation. J Mol Cell Cardiol 52:814–821

    Article  PubMed  CAS  Google Scholar 

  28. Duncker DJ, Merkus D (2005) Acute adaptations of the coronary circulation to exercise. Cell Biochem Biophys 43:17–35

    Article  PubMed  CAS  Google Scholar 

  29. Berne RM (1963) Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol 204:317–322

    PubMed  CAS  Google Scholar 

  30. Gerlach E, Deuticke B, Dreisbach RH (1963) Der nucleotid-abbau im herzmuskel bei sauerstoffmangel und seine mögliche bedeutung für die coronardurchblutung. Naturwissenschaften 50:228–229

    Article  CAS  Google Scholar 

  31. Belardinelli L, Linden J, Berne RM (1989) The cardiac effects of adenosine. Prog Cardiovasc Dis 32:73–97

    Article  PubMed  CAS  Google Scholar 

  32. Busse R, Förstermann U, Matsuda H, Pohl U (1984) The role of prostaglandins in the endothelium-mediated vasodilatory response to hypoxia. Pflugers Arch 401:77–83

    Article  PubMed  CAS  Google Scholar 

  33. Juránek I, Bauer V, Donnerer J, Lembeck F, Peskar BA (2002) Severe hypoxia inhibits prostaglandin I(2) biosynthesis and vasodilatory responses induced by ionophore A23187 in the isolated rabbit ear. Pharmacology 66:199–205

    Article  PubMed  Google Scholar 

  34. Kalsner S (1977) The effect of hypoxia on prostaglandin output and on tone in isolated coronary arteries. Can J Physiol Pharmacol 55:882–887

    Article  PubMed  CAS  Google Scholar 

  35. Michiels C, Arnould T, Knott I, Dieu M, Remacle J (1993) Stimulation of prostaglandin synthesis by human endothelial cells exposed to hypoxia. Am J Physiol 264:C866–C874

    PubMed  CAS  Google Scholar 

  36. Dai XZ, Bache RJ (1984) Effect of indomethacin on coronary blood flow during graded treadmill exercise in the dog. Am J Physiol 247(3 Pt 2):H452–H458

    PubMed  CAS  Google Scholar 

  37. Brown IP, Thompson CI, Belloni FL (1993) Role of nitric oxide in hypoxic coronary vasodilatation in isolated perfused guinea pig heart. Am J Physiol 264:H821–H829

    PubMed  CAS  Google Scholar 

  38. Chilian WM (1997) Coronary microcirculation in health and disease. Summary of an NHLBI workshop. Circulation 95:522–528

    Article  PubMed  CAS  Google Scholar 

  39. Randall WC, Ardell JL (1988) Functional anatomy of the cardiac efferent innervation. In: Kulbertus HE, Franck G (eds) Neurocardiology. Futura Publishing, New York, pp 3–24

    Google Scholar 

  40. Zipes DP, Inoue H (1988) Autonomic neural control of cardiac excitable properties. In: Kulbertus HE, Franck G (eds) Neurocardiology. Futura Publishing, New York, pp 787–796

    Google Scholar 

  41. McDougall AJ, McLeod JG (1996) Autonomic neuropathy. 1. Clinical features, investigation, pathophysiology, and treatment. J Neurol Sci 137:79–88

    Article  PubMed  CAS  Google Scholar 

  42. Chilian WM, Eastham CL, Layne SM, Marcus ML (1988) Small vessel phenomena in the coronary microcirculation: phasic intramyocardial perfusion and coronary microvascular dynamics. Prog Cardiovasc Dis 31:17–38

    Article  PubMed  CAS  Google Scholar 

  43. Chilian WM, Layne SM, Eastham CL, Marcus ML (1989) Heterogeneous microvascular coronary a-adrenergic vasoconstriction. Circ Res 64:376–388

    Article  PubMed  CAS  Google Scholar 

  44. Miyashiro JK, Feigl EO (1993) Feedforward control of coronary blood flow via coronary-receptor stimulation. Circ Res 73:252–263

    Article  PubMed  CAS  Google Scholar 

  45. Miyashiro JK, Feigl EO (1995) A model of combined feedforward and feedback control of coronary blood flow. Am J Physiol Heart Circ Physiol 268:H895–H908

    CAS  Google Scholar 

  46. Quillen J, Sellke F, Banitt P, Harrison D (1992) The effect of norepinephrine on the coronary microcirculation. J Vasc Res 29:2–7

    PubMed  CAS  Google Scholar 

  47. Sun D, Huang A, Mital S et al (2002) Norepinephrine elicits ß2-receptor-mediated dilatation of isolated human coronary arterioles. Circulation 106:550–555

    Article  PubMed  CAS  Google Scholar 

  48. Zuberbuhler RC, Bohr DF (1965) Responses of coronary smooth muscle to catecholamines. Circ Res 16:431–440

    Article  PubMed  CAS  Google Scholar 

  49. Duncker DJ, Stubenitsky R, Verdouw PD (1998) Autonomic control of vasomotion in the porcine coronary circulation during treadmill exercise: evidence for feed-forward ß-adrenergic control. Circ Res 82:1312–1322

    Article  PubMed  CAS  Google Scholar 

  50. Gorman MW, Tune JD, Richmond KN, Feigl EO (2000) Feedforward sympathetic coronary vasodilatation in exercising dogs. J Appl Physiol 89:1892–1902

    PubMed  CAS  Google Scholar 

  51. Feigl EO (1987) The paradox of adrenergic coronary vasoconstriction. Circulation 76:737–745

    Article  PubMed  CAS  Google Scholar 

  52. Maseri A (1991) Coronary vasoconstriction: visible and invisible. N Engl J Med 325:1579–1580

    Article  PubMed  CAS  Google Scholar 

  53. De Silva R, Camici PG (1994) Role of positron emission tomography in the investigation of human coronary circulatory function. Cardiovasc Res 28:1595–1612

    Article  PubMed  Google Scholar 

  54. Feigl EO (1998) Neural control of coronary blood flow. J Vasc Res 35:85–92

    Article  PubMed  CAS  Google Scholar 

  55. Broten TP, Miyashiro JK, Moncada S, Feigl EO (1992) Role of endothelium-derived relaxing factor in parasympathetic coronary vasodilatation. Am J Physiol 262:H1579–H1584

    PubMed  CAS  Google Scholar 

  56. Olsson RA, Gregg DE (1965) Myocardial reactive hyperemia in the unanesthetized dog. Am J Physiol 208:224–230

    PubMed  CAS  Google Scholar 

  57. Kelley KO, Gould KL (1981) Coronary reactive hyperaemia after brief occlusion and after deoxygenated perfusion. Cardiovasc Res 15:615–622

    Article  PubMed  CAS  Google Scholar 

  58. L’Abbate A, Camici P, Trivella MG et al (1981) Time-dependent response of coronary flow to prolonged adenosine infusion: doubling of peak reactive hyperaemic flow. Cardiovasc Res 15:282–286

    Article  PubMed  Google Scholar 

  59. Lorenzoni R, Rosen SD, Camici PG (1996) Effect of alpha-1 adrenoceptor blockade on resting and hyperemic myocardial blood flow in normal humans. Am J Physiol 271:H1302–H1306

    PubMed  CAS  Google Scholar 

  60. Meredith IT, Currie KE, Anderson TJ, Roddy MA, Ganz P, Creager MA (1996) Postischemic vasodilatation in human forearm is dependent on endothelium-derived nitric oxide. Am J Physiol 270:1435–1440

    Google Scholar 

  61. Gould KL, Lipscomb K, Hamilton GW (1974) Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 33:87–94

    Article  PubMed  CAS  Google Scholar 

  62. Hoffman JI (1987) A critical review of coronary reserve. Circulation 75:6–11

    Google Scholar 

  63. Canty JM Jr (1988) Coronary pressure-function and steady-state pressure-flow relations during autoregulation in the unanesthetized dog. Circ Res 63:821–836

    Article  PubMed  Google Scholar 

  64. Bache RJ, Vrobel TR, Arentzen CE, Ring WS (1981) Effect of maximal coronary vasodilatation on transmural myocardial perfusion during tachycardia in dogs with left ventricular hypertrophy. Circ Res 49:742–749

    Article  PubMed  CAS  Google Scholar 

  65. Chareonthaitawee P, Kaufmann PA, Rimoldi O, Camici PG (2001) Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans. Cardiovasc Res 50:151–161

    Article  PubMed  CAS  Google Scholar 

  66. Uren NG, Camici PG, Melin JA et al (1995) The effect of aging on the coronary vasodilator reserve in man. J Nucl Med 36:2032–2036

    PubMed  CAS  Google Scholar 

  67. Hajjiri MM, Leavitt MB, Zheng H, Spooner AE, Fischman AJ, Gewirtz H (2009) Comparison of positron emission tomography measurement of adenosine stimulated absolute myocardial blood flow versus relative myocardial tracer content for physiological assessment of coronary artery stenosis severity and location. J Am Coll Cardiol Img 2:751–758

    Article  Google Scholar 

  68. Cecchi F, Gistri R, Olivotto I, Lorenzoni R, Chiriatti G, Camici PG (2003) Impaired coronary microvascular function as an independent prognostic predictor in patients with hypertrophic cardiomyopathy. N Engl J Med 349:1027–1035

    Article  PubMed  CAS  Google Scholar 

  69. Neglia D, Michelassi C, Trivieri MG et al (2002) Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 105:186–193

    Article  PubMed  Google Scholar 

  70. Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG (1994) Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med 330:1782–1788

    Article  PubMed  CAS  Google Scholar 

  71. Chilian WM, Mass HJ, Williams SE, Layne SM, Smith EE, Scheel KW (1990) Microvascular occlusions promote coronary collateral growth. Am J Physiol 258:H1103–H1111

    PubMed  CAS  Google Scholar 

  72. Matsunaga T, Chilian WM, March K (2005) Angiostatin is negatively associated with coronary collateral growth in patients with coronary artery disease. Am J Physiol Heart Circ Physiol 288:H2042–H2046

    Article  PubMed  CAS  Google Scholar 

  73. Mitsuma W, Kodama M, Hanawa H et al (2007) Serum endostatin in the coronary circulation of patients with coronary heart disease and its relation to coronary collateral formation. Am J Cardiol 99:494–498

    Article  PubMed  CAS  Google Scholar 

  74. Simons M, Bonow RO, Chronos NA et al (2000) Clinical trials in coronary angiogenesis: issues, problems, consensus: an expert panel summary. Circulation 102:E73–E86

    Article  PubMed  CAS  Google Scholar 

  75. Rocic P, Kolz C, Reed R, Potter B, Chilian WM (2007) Optimal reactive oxygen species concentration and p38 MAP kinase are required for coronary collateral growth. Am J Physiol Heart Circ Physiol 292:H2729–H2736

    Article  PubMed  CAS  Google Scholar 

  76. Fujita M, Nakae I, Kihara Y et al (1999) Determinants of collateral development in patients with acute myocardial infarction. Clin Cardiol 22:595–599

    Article  PubMed  CAS  Google Scholar 

  77. Fujita M, McKown DP, McKown MD, Franklin D (1988) Effects of glyceryl trinitrate on functionally regressed newly developed collateral vessels in conscious dogs. Cardiovasc Res 22:639–647

    Article  PubMed  CAS  Google Scholar 

  78. Fulton WFM (1964) The dynamic factor in enlargement of coronary arterial anastomoses, and paradoxical changes in the subendocardial plexus. Br Heart J 26:39–50

    Article  PubMed  CAS  Google Scholar 

  79. Wustmann K, Zbinden S, Windecker S, Meier B, Seiler C (2003) Is there functional collateral flow during vascular occlusion in angiographically normal coronary arteries? Circulation 107:2213–2220

    Article  PubMed  Google Scholar 

  80. Tomai F, Crea F, Gaspardone A et al (1994) Determinants of myocardial ischemia during percutaneous transluminal coronary angioplasty in patients with significant narrowing of a single coronary artery and stable or unstable angina pectoris. Am J Cardiol 74:1089–1094

    Article  PubMed  CAS  Google Scholar 

  81. Meier P, Gloekler S, Zbinden R et al (2007) Beneficial effect of recruitable collaterals: a 10-year follow-up study in patients with stable coronary artery disease undergoing quantitative collateral measurements. Circulation 116:975–983

    Article  PubMed  Google Scholar 

  82. Teunissen PFA, Horrevoets AJG, van Royen N (2011) The coronary collateral circulation: genetic and environmental determinants in experimental models and humans. J Mol Cell Cardiol 52:897–904

    Article  PubMed  Google Scholar 

  83. Bang OY, Saver JL, Buck BH et al (2008) Impact of collateral flow on tissue fate in acute ischaemic stroke. J Neurol Neurosurg Psychiatry 79:625–629

    Article  PubMed  CAS  Google Scholar 

  84. Maas MB, Lev MH, Ay H et al (2009) Collateral vessels on CT angiography predict outcome in acute ischemic stroke. Stroke 40:3001–3005

    Article  PubMed  Google Scholar 

  85. Abul-Khoudoud O (2006) Diagnosis and risk assessment of lower extremity peripheral arterial disease. J Endovasc Ther 13(Suppl 2):II10-8

    Google Scholar 

  86. Tirziu D, Moodie KL, Zhuang ZW et al (2005) Delayed arteriogenesis in hypercholesterolemic mice. Circulation 112:2501–2509

    Article  PubMed  CAS  Google Scholar 

  87. Boodhwani M, Nakai Y, Mieno S et al (2006) Hypercholesterolemia impairs the myocardial angiogenic response in a swine model of chronic ischemia: role of endostatin and oxidative stress. Ann Thorac Surg 81:634–641

    Article  PubMed  Google Scholar 

  88. Koerselman J, de Jaegere PP, Verhaar MC, Grobbee DE, van der Graaf Y (2007) Coronary collateral circulation: the effects of smoking and alcohol. Atherosclerosis 191:191–198

    Article  PubMed  CAS  Google Scholar 

  89. Abaci A, Oguzhan A, Kahraman S et al (1999) Effect of diabetes mellitus on formation of coronary collateral vessels. Circulation 99:2239–2242

    Article  PubMed  CAS  Google Scholar 

  90. Zbinden R, Zbinden S, Billinger M, Windecker S, Meier B, Seiler C (2005) Influence of diabetes mellitus on coronary collateral flow: an answer to an old controversy. Heart 91:1289–1293

    Article  PubMed  CAS  Google Scholar 

  91. Lee CW, Stabile E, Kinnaird T et al (2004) Temporal patterns of gene expression after acute hindlimb ischemia in mice: insights into the genomic program for collateral vessel development. J Am Coll Cardiol 43:474–482

    Article  PubMed  CAS  Google Scholar 

  92. Meier P, Antonov J, Zbinden R et al (2009) Non-invasive gene-expression-based detection of well-developed collateral function in individuals with and without coronary artery disease. Heart 95:900–908

    Article  PubMed  CAS  Google Scholar 

  93. Tvan der Laan AM, Schirmer SH, de Vries MR et al (2012) Galectin-2 expression is dependent on the rs7291467 polymorphism and acts as an inhibitor of arteriogenesis. Eur Heart J 33:1076–1084

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Crea .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Crea, F., Lanza, G.A., Camici, P.G. (2014). Physiology of Coronary Microcirculation. In: Coronary Microvascular Dysfunction. Springer, Milano. https://doi.org/10.1007/978-88-470-5367-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5367-0_1

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5366-3

  • Online ISBN: 978-88-470-5367-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics