Skip to main content

Neuroblastoma

  • Chapter
  • First Online:
Atlas of PET/CT in Pediatric Patients

Abstract

Neuroblastoma (NB) is a malignant neoplasm that originates from neuroectodermal cells of the neural crest. During embryonic life, these cells migrate, giving rise to the sympathetic ganglia and adrenal medulla. The mean age at NB diagnosis is around 2 years, with 90 % of the cases diagnosed in children under the age of 6 years but only exceptionally in adolescents and in adults. In 40 % of the cases, the NB is localized to the adrenal glands, although it can develop anywhere in the sympathetic nervous system: neck (1 %), chest (19 %), other sites in the abdomen (30 %), or in the pelvis (1 %). The degree of malignancy of the tumor is determined by the proportion of cellular and extracellular maturation. The most aggressive and undifferentiated forms occur in young children (average 2 years of age), while the more mature forms, represented by ganglioneuroma, are usually seen in older children. 18F-fluorodeoxyglucose is the principal PET tracer in oncology, and its role in NB has also been investigated. However, thus far its use is limited to those cases in which the 123I-MIBG scan is negative or inconclusive. In this setting, the superior performance of 18F-FDG–PET has been demonstrated, based on a sensitivity and specificity of 78 and 92 %, respectively, and, compared to 123I-MIBG scintigraphy, 50 and 75 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caron HN, Pearson ADJ (2005) Neuroblastoma. In: Voute PA, Barrett A, Stevens MCG, Caron HN (eds) Cancer in children, 5th edn. Oxford University Press, Oxford, pp 337–352

    Google Scholar 

  2. Beckwith JB, Perrin EV (1963) In situ neuroblastomas: a contribution to the natural history of neural crest tumors. Am J Pathol 43(6):1089–1104

    PubMed  CAS  Google Scholar 

  3. Rothenberg AB, Berdon WE, D’Angio GJ et al (2009) Neuroblastoma-remembering the three physicians who described it a century ago: James Homer Wright, William Pepper, and Robert Hutchison. Pediatr Radiol 39(2):155–160

    Article  PubMed  Google Scholar 

  4. Conte M, Parodi S, De Bernardi B et al (2006) Neuroblastoma in adolescents: the Italian experience. Cancer 106:1409–1417

    Article  PubMed  CAS  Google Scholar 

  5. Tateishi U, Hasegawa T, Makimoto A, Moriyama N (2003) Adult neuroblastoma: radiologic and clinicopathologic features. J Comput Assist Tomogr 27(3):321–326

    Article  PubMed  Google Scholar 

  6. Ley S, Ley-Zaporozhan J, Günther P et al (2011) Neuroblastoma imaging. Rofo 183(3):217–225

    Article  PubMed  CAS  Google Scholar 

  7. Lonergan GJ, Schwab CM, Suarez ES et al (2002) Neuroblastoma, ganglioneuroblastoma, and ganglioneuroma: radiologic-pathologic correlation. Radiographics 22:911–934

    Article  PubMed  Google Scholar 

  8. Papaioannou G, McHugh K (2005) Neuroblastoma in childhood: review and radiological findings. Cancer Imaging 5:116–127

    Article  PubMed  Google Scholar 

  9. Look AT, Hayes FA, Shuster JJ et al (1991) Clinical relevance of tumor cell ploidy and N-myc gene amplification in childhood neuroblastoma. A pediatric Oncology Group Study. J Clin Oncol 9:581–591

    PubMed  CAS  Google Scholar 

  10. Tonini GP, Boni L, Pession A et al (1997) MYCN oncogene amplification in neuroblastoma is associated with worse prognosis, except in stage 4s: the Italian experience with 295 children. J Clin Oncol 15:85–93

    PubMed  CAS  Google Scholar 

  11. Caron H, van Sluis P, Buschman R et al (1996) Allelic loss of chromosome 1p as a predictor of unfavorable outcome in patients with neuroblastoma. N Engl J Med 334:225–230

    Article  PubMed  CAS  Google Scholar 

  12. Bown N, Cotterill S, Lastowska M et al (1999) Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. N Eng J Med 340:1954–1961

    Article  CAS  Google Scholar 

  13. Asgharzadeh S, Pique-Regi R, Sposto R et al (2006) Prognostic significance of gene expression profiles of metastatic neuroblastomas lacking MYCN gene amplification. J Natl Cancer Inst 98:1193–1203

    Article  PubMed  CAS  Google Scholar 

  14. Berthold F, Simon T (2005) Clinical presentation of neuroblastoma. In: Cheung NK, Cohn SL (eds) Neuroblastoma. Springer, New York, pp 63–85

    Chapter  Google Scholar 

  15. Strenger V, Kerbl R, Dornbusch HJ et al (2007) Diagnostic and prognostic impact of urinary catecholamines in neuroblastoma patients. Pediatr Blood Cancer 48:504–509

    Article  PubMed  Google Scholar 

  16. Schmidt ML, Lukens JN, Seeger RC et al (2000) Biologic factors determine prognosis in infants with stage IV neuroblastoma: a prospective Children’s Cancer Group study. J Clin Oncol 18:1260–1268

    PubMed  CAS  Google Scholar 

  17. Perez CA, Matthay KK, Atkinson JB et al (2000) Biologic variables in the outcome of stage I and II neuroblastoma treated with surgery as primary therapy: a Children’s Cancer Group study. J Clin Oncol 18:18–26

    PubMed  CAS  Google Scholar 

  18. Ceschel S, Casotto V, Valsecchi MG et al (2006) Survival after relapse in children with solid tumors: a follow-up study from the Italian off-therapy registry. Pediatr Blood Cancer 47(5):560–566

    Article  PubMed  Google Scholar 

  19. Goo HW (2010) Whole-body MRI of neuroblastoma. Eur J Radiol 75(3):306–314

    Article  PubMed  Google Scholar 

  20. Biasotti S, Garaventa A, Villavecchia GP et al (2000) False-negative metaiodobenzylguanidine scintigraphy at diagnosis of neuroblastoma. Med Pediatr Oncol 35:153–155

    Article  PubMed  CAS  Google Scholar 

  21. Shulkin BL, Hutchinson RJ, Castle VP, Yanik GA, Shapiro B, Sisson JC (1996) Neuroblastoma: positron emission tomography with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose compared with metaiodobenzylguanidine scintigraphy. Radiology 199:743–750

    PubMed  CAS  Google Scholar 

  22. Kushner BH, Yeung HW, Larson SM, Kramer K, Cheung NK (2001) Extending positron emission tomography scan utility to high-risk neuroblastoma: fluorine-18 fluorodeoxyglucose positron emission tomography as sole imaging modality in follow-up of patients. J Clin Oncol 219:3397–3405

    Google Scholar 

  23. Kushner BH (2004) Neuroblastoma: a disease requiring a multitude of imaging studies. J Nucl Med 45:1172–1188

    PubMed  Google Scholar 

  24. Melzer HI, Coppenrath E, Schmid I, Albert MH, von Schweinitz D, Tudball C et al (2011) (123)I-MIBG scintigraphy/SPECT versus (18)F-FDG PET in paediatric neuroblastoma. Eur J Nucl Med Mol Imaging 38:1648–1658

    Article  PubMed  Google Scholar 

  25. Taggart DR, Han MM, Quach A, Groshen S, Ye W, Villablanca JG et al (2009) Comparison of iodine-123 metaiodobenzylguanidine (MIBG) scan and [18F]fluorodeoxyglucose positron emission tomography to evaluate response after iodine-131 MIBG therapy for relapsed neuroblastoma. J Clin Oncol 27:5343–5349

    Article  PubMed  CAS  Google Scholar 

  26. Sharp SE, Shulkin BL, Gelfand MJ, Salisbury S, Furman WL (2009) 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med 50:1237–1243

    Article  PubMed  Google Scholar 

  27. Papathanasiou ND, Gaze MN, Sullivan K, Aldridge M, Waddington W, Almuhaideb A, Bomanji JB (2011) 18F-FDG PET/CT and 123I-metaiodobenzylguanidine imaging in high-risk neuroblastoma: diagnostic comparison and survival analysis. J Nucl Med 52:519–525

    Article  PubMed  CAS  Google Scholar 

  28. LaBrosse EH et al (1976) Catecholamine metabolism in neuroblastoma. J Natl Cancer Inst 57(3):633–638

    PubMed  CAS  Google Scholar 

  29. Brodeur GM (1991) Neuroblastoma and other peripheral neuroectodermal tumors. In: Fernbach DJ, Vietti TJ (eds) Clinical pediatric oncology, 4th edn. CV Mosby, St. Louis, p 337

    Google Scholar 

  30. Hoegerle S, Altehoefer C, Ghanem N et al (2001) 18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur J Nucl Med Mol Imaging 28(1):64–71

    Article  CAS  Google Scholar 

  31. Becherer A, Szabó M, Karanikas G et al (2004) Imaging of advanced neuroendocrine tumors with (18)F-FDOPA PET. J Nucl Med 45(7):1161–1167

    PubMed  CAS  Google Scholar 

  32. Koopmans KP, de Vries EG, Kema IP et al (2006) Staging of carcinoid tumours with 18FDOPA PET: a prospective, diagnostic accuracy study. Lancet Oncol 7(9):728–734

    Article  PubMed  CAS  Google Scholar 

  33. Jager PL, Chirakal R, Marriott CJ et al (2008) 6-L-18F-fluorodihydroxyphenylalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J Nucl Med 49(4):573–586

    Article  PubMed  CAS  Google Scholar 

  34. Minn H, Kauhanen S, Seppänen M, Nuutila P (2009) 18F-FDOPA: a multiple-target molecule. J Nucl Med 50(12):1915–1918

    Article  PubMed  CAS  Google Scholar 

  35. Piccardo A, Lopci E, Conte M, Garaventa A, Foppiani L, Altrinetti V et al (2012) Comparison of (18)F-DOPA PET/CT and (123)I-MIBG scintigraphy in stage 3 and 4 neuroblastoma: a pilot study. Eur J Nucl Med Mol Imaging 39:57–61

    Article  PubMed  CAS  Google Scholar 

  36. O’Dorisio MS, Chen F, O’Dorisio TM et al (1994) Characterization of somatostatin receptors on human neuroblastoma tumors. Cell Growth Differ 5:1–8

    PubMed  Google Scholar 

  37. Albers AR, O’Dorisio MS, Balster DA et al (2000) Somatostatin receptor gene expression in neuroblastoma. Regul Pept 88:61–73

    Article  PubMed  CAS  Google Scholar 

  38. Kropp J, Hofmann M, Bihl H (1997) Comparison of MIBG and pentetreotide scintigraphy in children with neuroblastoma. Is the expression of somatostatin receptors a prognostic factor? Anticancer Res 17(3B):1583–1588

    PubMed  CAS  Google Scholar 

  39. Shalaby-Rana E, Majd M, Andrich MP, Movassaghi N (1997) In-111 pentetreotide scintigraphy in patients with neuroblastoma. Comparison with I-131 MIBG, N-MYC oncogene amplification, and patient outcome. Clin Nucl Med 22(5):315–319

    Article  PubMed  CAS  Google Scholar 

  40. Kroiss A, Putzer D, Uprimny C, Decristoforo C, Gabriel M, Santner W et al (2011) Functional imaging in phaeochromocytoma and neuroblastoma with 68Ga-DOTA-Tyr 3-octreotide positron emission tomography and 123I-metaiodobenzylguanidine. Eur J Nucl Med Mol Imaging 38:865–873

    Article  PubMed  CAS  Google Scholar 

  41. Gains JE, Bomanji JB, Fersht NL, Sullivan T, D’Souza D, Sullivan KP et al (2011) 177Lu-DOTATATE molecular radiotherapy for childhood neuroblastoma. J Nucl Med 52:1041–1047

    Article  PubMed  Google Scholar 

  42. Lopci E, Chiti A, Castellani MR, Pepe G, Antunovic L, Fanti S et al (2011) Matched pairs dosimetry: 124I/131I metaiodobenzylguanidine and 124I/131I and 86Y/90Y antibodies. Eur J Nucl Med Mol Imaging 38:S28–S40

    Article  PubMed  Google Scholar 

  43. Lee CL, Wahnishe H, Sayre GA, Cho HM, Kim HJ, Hernandez- Pampaloni M et al (2010) Radiation dose estimation using preclinical imaging with 124I-metaiodobenzylguanidine (MIBG) PET. Med Phys 37(9):4861–4866

    Article  PubMed  Google Scholar 

  44. Herzog H, Tellmann L, Scholten B, Coenen HH, Qaim SM (2007) PET imaging problems with the non-standard positron emitters yttrium-86 and iodine-124. Q J Nucl Med Mol Imaging 52:159–165

    PubMed  Google Scholar 

  45. Mariani G, Bruselli L, Duatti A (2008) Is PET always an advantage versus planar and SPECT imaging? Eur J Nucl Med Mol Imaging 35:1560–1565

    Article  PubMed  Google Scholar 

  46. Pentlow KS, Graham MC, Lambrecht RM, Cheung NKV, Larson SM (1991) Quantitative imaging of I-124 using positron emission tomography with applications to radioimmunodiagnosis and radioimmunotherapy. Med Phys 18(3):357–366

    Article  PubMed  CAS  Google Scholar 

  47. Lopci E, Piccardo A, Nanni C, Altrinetti V, Garaventa A, Pession A, Cistaro A, Chiti A, Villavecchia G, Fanti S (2012) F18-DOPA PET/CT in neuroblastoma: comparison with conventional imaging with CT/MR. Clin Nucl Med 37:e73–e78

    Article  PubMed  Google Scholar 

  48. Fottner C, Helisch A, Anlauf M et al (2010) 6-18F-Fluoro-L-dihydroxyphenylalanine positron emission tomography is superior to 123i-metaiodobenzyl-guanidine scintigraphy in the detection of extrarenal and hereditary pheochromocytomas and paragangliomas: correlation with vesicular monoamine transporter expression. J Clin Endocrinol Metab 95(6):2800–2810

    Article  PubMed  CAS  Google Scholar 

  49. Timmers HJ, Chen CC, Carrasquillo JA et al (2009) Comparison of 18F-fluoro-LDOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab 94(12):4757–4767

    Article  PubMed  CAS  Google Scholar 

  50. Fiebrich HB, Brouwers AH, Kerstens MN et al (2009) 6-[F-18]fluoro-l-dihydroxyphenylalanine positron emission tomography is superior to conventional imaging with 123i-metaiodobenzylguanidine scintigraphy, computer tomography, and magnetic resonance imaging in localizing tumors causing catecholamine excess. J Clin Endocrinol Metab 94:3922–3930

    Article  PubMed  CAS  Google Scholar 

  51. Kauhanen S, Seppanen M, Ovaska J et al (2009) The clinical value of [18F]fluoro-dihydroxyphenylalanine positron emission tomography in primary diagnosis, staging, and restaging of neuroendocrine tumors. Endocr Relat Cancer 16:255–265

    Article  PubMed  CAS  Google Scholar 

  52. Giammarile F, Chiti A, Lassman M et al (2008) EANM procedure guidelines for 131I-meta-iodobenzylguanidine (131I-mIBG) therapy. Eur J Nucl Med Mol Imaging 35(5):1039–1047

    Article  PubMed  CAS  Google Scholar 

  53. Moyenes JSE, Babich JW, Carter R, Meller ST, Agrawal M, McElwain TJ (1989) Quantitative study of radioiodinated metaiodobenzylguanidine uptake in children with neuroblastoma: correlation with tumor histopathology. J Nucl Med 30(4):474–480

    Google Scholar 

  54. Lebtahi Hadj-Djilani N, Lebtahi NE, Bischof Delaloye A, Laurini R, Beck D (1995) Diagnosis and follow-up of neuroblastoma by means of iodine-123 metaiodobenzylguanidine scintigraphy and bone scan, and the influence of histology. Eur J Nucl Med 22:322–329

    Article  Google Scholar 

  55. Khafagi FA, Shapiro B, Fig LM, Mallette S, Sisson JC (1989) Labetalol reduces iodine-131 uptake by pheochromocytoma and normal tissues. J Nucl Med 30:481–489

    PubMed  CAS  Google Scholar 

  56. Giammarile F, Lumbroso J, Ricard M, Aubert B, Hartmann O, Schlumberger M et al (1995) Radioiodinated metaiodobenzylguanidine in neuroblastoma: influence of high dose on tumour site detection. Eur J Nucl Med 22:1180–1183

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelina Cistaro MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Lopci, E., Ficola, U., Cistaro, A. (2014). Neuroblastoma. In: Cistaro, A. (eds) Atlas of PET/CT in Pediatric Patients. Springer, Milano. https://doi.org/10.1007/978-88-470-5358-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5358-8_12

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5357-1

  • Online ISBN: 978-88-470-5358-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics