Skip to main content

Neuroendocrine Tumors

  • Chapter
  • First Online:
Atlas of PET/CT in Pediatric Patients

Abstract

Neuroendocrine tumors (NETs) are rare neoplasms arising from the diffuse endocrine system and spreading throughout the different organs and tissues of the body. The majority of NETs occurring in the pediatric population are sporadic, but these tumors may also be diagnosed as part of an inherited syndrome, such as multiple endocrine neoplasia (MEN) type I and II, the Carney complex, neurofibromatosis 1 (NF-1), and von Hippel–Lindau (VHL) disease. The use of many radiopharmaceuticals as tracers has been investigated in NET. Dihydroxyphenylalanine labeled with 18F-fluoride (18F-DOPA) is a positron-emitting compound that clinically has been widely used since the early 1980s to image the basal ganglia. In oncology, 18F-DOPA is mostly employed to image tumors arising from neural crest cells and mimicking APUD (amine precursor uptake and decarboxylation) cells in their ability to accumulate and decarboxylate l-DOPA as a precursor of dopamine. The radiopharmaceuticals known as 68Ga-DOTA peptides (-NOC, -TOC, -TATE), include several octreotide analogues, all targeting, with variable affinity, somatostatin receptors. The rationale for using radiolabeled octreotide analogues for imaging NETs is based on the assumption that in more than 80 % of the cases these tumors overexpress somatostatin receptors (SSTRs). Although 18F-fluorodeoxyglucose (18F-FDG) is the tracer of choice for imaging most malignant tumors, its utility in NETs is limited because they exhibit relatively low 18F-FDG uptake, as the vast majority of these tumors are well differentiated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howman-Giles R, Shaw PJ, Uren RF, Chung DKV (2007) Neuroblastoma and other neuroendocrine tumors. Semin Nucl Med 37:286–302

    Article  PubMed  Google Scholar 

  2. Wick MR (2000) Neuroendocrine neoplasia. Current concepts. Am J Clin Pathol 113:331–335

    Article  PubMed  CAS  Google Scholar 

  3. Sarvida ME, O’Dorisio MS (2011) Neuroendocrine tumors in children: rare or not so rare. Endocrinol Metab Clin North Am 40:65–80

    Article  PubMed  Google Scholar 

  4. Crocetti E, Buiatti E, Amorosi A (1997) Epidemiology of carcinoid tumours in central Italy. Eur J Epidemiol 13:357–359

    Article  PubMed  CAS  Google Scholar 

  5. Yao JC, Hassan M, Phan A et al (2008) One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol 26:3063–3072

    Article  PubMed  Google Scholar 

  6. Khanna G, O’Dorisio SM, Menda Y et al (2008) Gastroenteropancreatic neuroendocrine tumors in children and young adults. Pediatr Radiol 38:251–259

    Article  PubMed  Google Scholar 

  7. Spunt SL, Pratt CB, Rao BN et al (2000) Childhood carcinoid tumors: the St Jude Children’s Research Hospital experience. J Pediatr Surg 35:1282–1286

    Article  PubMed  CAS  Google Scholar 

  8. Ambrosini V, Campana D, Nanni C et al (2012) Is (68)Ga-DOTA-NOC PET/CT indicated in patients with clinical, biochemical or radiological suspicion of neuroendocrine tumour? Eur J Nucl Med Mol Imaging 39(8):1278–1283

    Article  PubMed  CAS  Google Scholar 

  9. Kaltsas GA, Besser GM, Grossman AB (2004) The diagnosis and medical management of advanced neuroendocrine tumors. Endocr Rev 25:458–511

    Article  PubMed  CAS  Google Scholar 

  10. Rufini V, Calcagni ML, Baum RP (2006) Imaging of neuroendocrine tumors. Semin Nucl Med 36:228–247

    Article  PubMed  Google Scholar 

  11. Bombardieri E, Giammarile F, Aktolun C et al (2010) 131I/123I-metaiodobenzylguanidine (mIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging 37(12):2436–2446

    Article  PubMed  Google Scholar 

  12. Giammarile F, Chiti A, Lassman M et al (2008) EANM procedure guidelines for 131I-meta-iodobenzylguanidine (131I-mIBG) therapy. Eur J Nucl Med Mol Imaging 35(5):1039–1047

    Article  PubMed  CAS  Google Scholar 

  13. Kaplan LM (1998) Endocrine tumors of the gastrointestinal tract and pancreas. In: Isselbacher KJ, Braunwald E, Wilson JD, Martin JB, Fauci AS, Kasper DL (eds) Harrison’s principles of internal medicine, 14th edn. McGraw-Hill, New York, pp 584–592

    Google Scholar 

  14. Pappo AS, Furman WL (2006) Management of infrequent cancers of childhood. In: Pizzo PA, Poplack DG (eds) Principles and practice of pediatric oncology, 5th edn. Lippincott Williams and Wilkins, Philadelphia, pp 1172–1201

    Google Scholar 

  15. Prasad V, Fetscher S, Baum RP (2007) Changing role of somatostatin receptor targeted drugs in NET: nuclear Medicine’ view. J Pharm Pharm Sci 10:321s–337s

    PubMed  CAS  Google Scholar 

  16. Vinik AI, Renar IP (1995) Neuroendocrine tumors of carcinoid variety. In: De Grool L (ed) Endocrinology, 3rd edn. WB Saunders, Philadelphia, pp 2803–2814

    Google Scholar 

  17. Sperling MA (2004) Hypoglycemia. In: Behrman RE, Kliegman RM, Jenson HB (eds) Nelson textbook of pediatrics. Saunders, Philadelphia, pp 505–518

    Google Scholar 

  18. Broaddus RR, Herzog CE, Hicks MJ (2003) Neuroendocrine tumors (carcinoid and neuroendocrine carcinoma) presenting at extra-appendiceal sites in childhood and adolescence. Arch Pathol Lab Med 127:1200–1203

    PubMed  Google Scholar 

  19. Hancock BJ, Di Lorenzo M, Youssef S et al (1993) Childhood primary pulmonary neoplasms. J Pediatr Surg 28:1133–1136

    Article  PubMed  CAS  Google Scholar 

  20. Jager PL, Chirakal R, Marriot CJ et al (2008) 6-L-18F-fluorodihydroxyphenylalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J Nucl Med 49:573–586

    Article  PubMed  CAS  Google Scholar 

  21. Garnett ES, Firnau G, Nahmias C (1983) Dopamine visualized in the basal ganglia of living man. Nature 305:137–138

    Article  PubMed  CAS  Google Scholar 

  22. Firnau G, Chiakal R, Garnett ES (1984) Aromatic radiofluorination with 18F fluorine gas: 6-[18F]fluoro-L-dopa. J Nucl Med 25:1228–1233

    PubMed  CAS  Google Scholar 

  23. Whal L, Nahmias C (1997) Modeling of fluorine-18-6-fluoro-L-Dopa in humans. J Nucl Med 37(3):432–437

    Google Scholar 

  24. Pearce AG (1969) The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept. J Histochem Cytochem 17:303–313

    Article  Google Scholar 

  25. Hoegerle S, Altehoefer C, Ghanem N et al (2001) Whole body 18F-DOPA PET for detection of gastrointestinal carcinoid tumors. Radiology 220:373–380

    Article  PubMed  CAS  Google Scholar 

  26. Hoegerle S, Nitzsche E, Altehoefer C et al (2002) Pheochromocytomas: detection with 18F DOPA whole body PET– initial results. Radiology 222(2):507–512

    Article  PubMed  Google Scholar 

  27. Hoegerle S, Ghanem N, Altehoefer C et al (2003) 18F-DOPA positron emission tomography for the detection of glomus tumours. Eur J Nucl Med Mol Imaging 30(5):689–694

    Article  PubMed  CAS  Google Scholar 

  28. Gourgiotis L, Sarlis NJ, Reynolds JC et al (2003) Localization of medullary thyroid carcinoma metastasis in a multiple endocrine neoplasia type 2a patient by 6-[18F]-fluorodopamine positron emission tomography. J Clin Endocrinol Metab 88(2):637–641

    Article  PubMed  CAS  Google Scholar 

  29. Jacob T, Grahek D, Younsi N et al (2003) Positron emission tomography with [18F]FDOPA and [18F]FDG in the imaging of small cell lung carcinoma: preliminary results. Eur J Nucl Med Mol Imaging 30:1266–1269

    Article  PubMed  CAS  Google Scholar 

  30. Becherer A, Szabó M, Karanikas G et al (2004) Imaging of advanced neuroendocrine tumors with (18)F-FDOPA PET. J Nucl Med 45(7):1161–1167

    PubMed  CAS  Google Scholar 

  31. Imani F, Agopian VG, Auerbach MS et al (2009) 18F-FDOPA PET and PET/CT accurately localize pheochromocytomas. J Nucl Med 50(4):513–519

    Article  PubMed  Google Scholar 

  32. Fiebrich HB, Brouwers AH, Kerstens MN et al (2009) 6-[F-18]Fluoro-L-dihydroxyphenylalanine positron emission tomography is superior to conventional imaging with (123)I-metaiodobenzylguanidine scintigraphy, computer tomography, and magnetic resonance imaging in localizing tumors causing catecholamine excess. J Clin Endocrinol Metab 94(10):3922–3930

    Article  PubMed  CAS  Google Scholar 

  33. Antunes P, Ginj M, Zhang H et al (2007) Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labeled with other radiometals? Eur J Nucl Med Mol Imaging 34:982–993

    Article  PubMed  CAS  Google Scholar 

  34. Prasad V, Baum RP (2010) Biodistribution of the Ga-68 labeled somatostatin analogue DOTA-NOC in patients with neuroendocrine tumors: characterization of uptake in normal organs and tumor lesions. Q J Nucl Med Mol Imaging 54(1):61–67

    PubMed  CAS  Google Scholar 

  35. Papotti M, Kuma U, Volante M, Pecchiono C, Patel YC (2001) Immunohistochemical detection of somatostatin receptor types 1–5 in medullary carcinoma of the thyroid. Clin Endocrinol 54:641–649

    Article  CAS  Google Scholar 

  36. Papotti M, Bongiovanni M, Volante M, Allia E, Landolfi S, Helboe L et al (2002) Expression of somatostatin receptor types 1–5 in 81 cases of gastrointestinal and pancreatic endocrine tumors. A correlative immunohistochemical and reverse-transcriptase polymerase chain reaction analysis. Virchows Arch 440(5):461–475

    Article  PubMed  CAS  Google Scholar 

  37. Hofmann M et al (2001) Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTATOC: preliminary data. Eur J Nucl Med 28:1751–1757

    Article  PubMed  CAS  Google Scholar 

  38. Ginj M, Chen J, Walter MA, Eltschinger V, Reubi JC, Maecke HR (2005) Preclinical evaluation of new and highly potent analogues of octreotide for predictive imaging and targeted radiotherapy. Clin Cancer Res 11(3):1136–1145

    PubMed  CAS  Google Scholar 

  39. Maecke HR, Hofmann M, Haberkorn U (2005) 68Ga-labeled peptides in tumor imaging. J Nucl Med 46:172S–178S

    PubMed  CAS  Google Scholar 

  40. Baum RP et al (2005) Receptor PET/CT imaging of neuroendocrine tumors using the Ga-68 labelled, high affinity somatostatin analogue DOTA-1-NaI3-octreotide (DOTA-NOC): clinical results in 327 patients. Eur J Nucl Med Mol Imaging 32:109s

    Google Scholar 

  41. Wild D, Mäcke HR, Waser B, Reubi JC, Ginj M, Rasch H et al (2005) 68Ga-DOTANOC: a first compound for PET imaging with high affinity for somatostatin receptor subtypes 2 and 5. Eur J Nucl Med Mol Imaging 32(6):724

    Article  PubMed  Google Scholar 

  42. Gabriel M et al (2007) 68Ga-DOTA-Tyr3-octreotie PET in neuroendocrine tumours: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48:508–518

    Article  PubMed  CAS  Google Scholar 

  43. Putzer D, Gabriel M, Henninger B, Kendler D, Uprimny C, Dobrozemsky G et al (2009) Bone metastasis in patients with neuroendocrine tumor: [68Ga]DOTA-Tyr3-octreotide PET in comparison to CT and bone scintigraphy. J Nucl Med 50:1214–1221

    Article  PubMed  Google Scholar 

  44. Ambrosini V, Tomassetti P, Franchi R, Fanti S (2010) Imaging of NETs with PET radiopharmaceuticals. Q J Nucl Med Mol Imaging 54(1):16–23

    PubMed  CAS  Google Scholar 

  45. Buchmann I, Henze M, Engelbrecht S et al (2007) Comparison of 68GA-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 34:1617–1626

    Article  PubMed  CAS  Google Scholar 

  46. Haug A, Auernhammer CJ, Wängler B, Tling R, Schmidt G, Göke B et al (2009) Intraindividual comparison of [68Ga]DOTA-TATE and [18F]DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging 36:765–770

    Article  PubMed  CAS  Google Scholar 

  47. Prasad V, Ambrosini V, Hommann M, Hoersch D, Fanti S, Baum RP (2010) Detection of unknown primary neuroendocrine tumours (CUP-NET) using (68)Ga-DOTA-NOC receptor PET/CT. Eur J Nucl Med Mol Imaging 37:67–77

    Article  PubMed  CAS  Google Scholar 

  48. Campana D, Ambrosini V, Pezzilli R, Fanti S, Labata AMM, Santini D et al (2010) Standardized uptake values of 68Ga-DOTANOC PET: a promising prognostic tool in neuroendocrine tumors. J Nucl Med 51:353–359

    Article  PubMed  Google Scholar 

  49. Kroiss A, Putzer D, Uprimny C et al (2011) Functional imaging in phaeochromocytoma and neuroblastoma with 68Ga-DOTA-Tyr3-octreotide positron emission tomography and 123I-metaiodobenzylguanidine. Eur J Nucl Med Mol Imaging 38:865–873

    Article  PubMed  CAS  Google Scholar 

  50. Adams S, Baum R, Rink T et al (1998) Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumours. Eur J Nucl Med 25(1):79–83

    Article  PubMed  CAS  Google Scholar 

  51. Bombardieri E, Maccauro M, De Deckere E et al (2001) Nuclear medicine imaging of neuroendocrine tumours. Ann Oncol 12(Suppl 2):S51–S61

    Article  PubMed  Google Scholar 

  52. Binderup T, Knigge U, Loft A et al (2010) 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin Cancer Res 16(3):978–985

    Article  PubMed  CAS  Google Scholar 

  53. Koopmans KP, Neels OC, Kema IP et al (2008) Improved staging of patients with carcinoid and islet cell tumors with [18F]dihydroxy-phenyl-alanine and [11C]5-hydroxy-tryptophan positron emission tomography. J Clin Oncol 26:1489–1495

    Article  PubMed  Google Scholar 

  54. Ilias I, Yu J, Carresquillo JA et al (2003) Superiority of 6-[18F]-fluorodopamine positron emission tomography versus [131I]-metaiodobenzylguanidine scintigraphy in the localization of metastatic pheochromocytoma. J Clin Endocrinol Metab 88:4083–4087

    Article  PubMed  CAS  Google Scholar 

  55. Shulkin BL, Wieland DM, Baro ME et al (1996) PET hydroxyephedrine imaging of neuroblastoma. J Nucl Med 37(1):16–21

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelina Cistaro MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Lopci, E., Cistaro, A. (2014). Neuroendocrine Tumors. In: Cistaro, A. (eds) Atlas of PET/CT in Pediatric Patients. Springer, Milano. https://doi.org/10.1007/978-88-470-5358-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5358-8_11

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5357-1

  • Online ISBN: 978-88-470-5358-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics