Skip to main content

Modelli secondari per lo sviluppo microbico

  • Chapter
  • First Online:
  • 836 Accesses

Part of the book series: Food ((FOOD))

Riassunto

Come già visto nel capitolo 2, le cinetiche di sviluppo dei microrganismi sono essenzialmente determinate dai fattori che caratterizzano l’ambiente in cui si trovano. Nel caso di un alimento, questi fattori possono essere definiti intrinseci (dipendenti dalle caratteristiche compositive del prodotto), estrinseci (determinati dalle modalità con cui il prodotto viene conservato), di processo (correlati alle tecnologie applicate durante la produzione) o impliciti (determinati dalle relazioni che si instaurano tra le popolazioni microbiche che colonizzano l’alimento).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  • Augustin JC, Zuliani V, Cornu M, Guillier L (2005) Growth rate and growth probability of Listeria monocytogenes in dairy, meat and seafood products in suboptimal conditions. Journal of Applied Microbiology, 99(5): 1019–1042

    Article  PubMed  Google Scholar 

  • Baranyi J, Pin C, Ross T (1999) Validating and comparing predictive models. International Journal of Food Microbiology, 48(3): 159–166

    Article  CAS  PubMed  Google Scholar 

  • Baranyi J, Ross T, McMeekin TA, Roberts TA (1996) Effects of parameterization on the performance of empirical models used in predictive microbiology. Food Microbiology, 13(1): 83–91

    Article  Google Scholar 

  • Basheer, IA, Hajmeer M (2000) Artificial neural networks: fundamentals, computing, design, and application. Journal of Microbiological Methods, 43(1): 3–31

    Article  CAS  PubMed  Google Scholar 

  • Bernaerts K, Dens E, Vereecken K et al (2004) Modeling microbial dynamics under time-varying conditions. In: McKellar RC, Lu X (eds) Modeling microbial responses in foods. CRC Press, Boca Raton

    Google Scholar 

  • Bernaerts K, Servaes RD, Kooyman S et al (2002) Optimal temperature input design for estimation of the square root model parameters: parameter accuracy and model validity restrictions. International Journal of Food Microbiology, 73(2–3): 145–157

    Article  PubMed  Google Scholar 

  • Bonapace CR, White RL, Friedrich LV, Bosso JA (2000) Evaluation of antibiotic synergy against Acinetobacter baumannii: a comparison with Etest, time-kill and checkboard methods. Diagnostic Microbiology and Infectious Disease, 38(1): 43–50

    Article  CAS  PubMed  Google Scholar 

  • Bovill RA, Bew J, Baranyi J (2001) Measurements and predictions of growth for Listeria monocyto — genes and Salmonella during fluctuating temperature II. Rapidly changing temperatures. International Journal of Food Microbiology, 67(1–2): 131–137

    Article  CAS  PubMed  Google Scholar 

  • Box GEP, Draper NR (1987) Empirical model-building and response surfaces. John Wiley & Sons, New York

    Google Scholar 

  • Coroller L, Kan-King-Yu D, Leguerinel I et al (2012) Modelling of growth, growth/no-growth interface and nonthermal inactivation areas of Listeria in foods. International Journal of Food Microbiology, 152(3): 139–152

    Article  PubMed  Google Scholar 

  • Dalgaard P, Jørgensen LV (2000) Cooked and brined shrimps packed in a modified atmosphere have a shelf-life of >7 months at 0 °C, but spoil at 4–6 days at 25 °C. International Journal of Food Science & Technology, 35(4): 431–442

    Article  CAS  Google Scholar 

  • Davey KR (1989) A predictive model for combined temperature and water activity on microbial growth during the growth phase. Journal of Applied Bacteriology, 67(5): 483–488

    Article  CAS  PubMed  Google Scholar 

  • Delignette-Muller ML, Baty F, Cornu M, Bergis H (2005) Modelling the effect of a temperature shift on the lag phase duration of Listeria monocytogenes. International Journal of Food Microbiology, 100(1–3): 77–

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Navarro F, Valero A, Hervás-Martínez C et al (2010) Development of a multi-classification neural network model to determine the microbial growth/no growth interface. International Journal of Food Microbiology, 141(3): 203–212

    Article  PubMed  Google Scholar 

  • Gardini F, Martuscelli M, Caruso MC et al (2001) Effects of pH, temperature and NaCl concentration on the growth kinetics, proteolytic activity an biogenic amine production of Enterococcus faecalis. International Journal of Food Microbiology, 64(1–2): 105–117

    Article  CAS  Google Scholar 

  • Gauch HG (1993) Prediction, parsimony and noise. American Scientist, 81(5): 468–478

    Google Scholar 

  • Gibson AM, Baranyi J, Pitt JI et al (1994) Predicting fungal growth: the effect of water activity on Aspergillus flavus and related species. International Journal of Food Microbiology, 23(3–4): 419–431

    Article  CAS  PubMed  Google Scholar 

  • Hajmeer M, Basheer I, Cliver DO (2006) Survival curves of Listeria monocytogenes in chorizos modeled with Artificial Neural Networks. Food Microbiology, 23(6): 561–570

    Article  CAS  PubMed  Google Scholar 

  • Haykin S (1998) Neural networks: a comprehensive foundation. Prentice Hall, London

    Google Scholar 

  • Hills BP, Mackey BM (1995) Multi-compartment kinetic models for injury, resuscitation, induced lag and growth in bacterial cell populations. Food Microbiology, 12: 333–346

    Article  Google Scholar 

  • Hills BP, Wright KM (1994) A new model for bacterial growth in heterogeneous systems. Journal of Theoretical Biology, 168(1): 31–41

    Article  CAS  PubMed  Google Scholar 

  • Lambert RJW, Lambert R (2003) A model for the efficacy of combined inhibitors. Journal of Applied Microbiology, 95(4): 734–743

    Article  CAS  PubMed  Google Scholar 

  • Lambert RJW, Pearson J (2000) Susceptibility testing: accurate and reproducible minimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) values. Journal of Applied Microbiology, 88(5): 784–790

    Article  CAS  PubMed  Google Scholar 

  • Lanciotti R, Sinigaglia M, Gardini F et al (2001) Growth/no growth interfaces of Bacillus cereus, Staphylococcus aureus and Salmonella enteritidis in model systems based on water activity, pH, temperature and ethanol concentration. Food Microbiology, 18(6): 659–668

    Article  CAS  Google Scholar 

  • Leistner L (2007) Combined method for food preservation. In: Rahman MS (ed) Handbook of Food Preservation, 2nd edn. CRC Press, Boca Raton, pp 867–894

    Chapter  Google Scholar 

  • Le Marc Y, Pin C, Baranyi J (2005) Methods to determine the growth domain in a multidimensional environmental space. International Journal of Food Microbiology, 100(1–3): 3–12

    PubMed  Google Scholar 

  • Malakar PK, Martens DE, Zwietering MH et al (1999) Modelling the interactions between Lactobacillus curvatus and Enterobacter cloacae. II. Mixed cultures and shelf life predictions. International Journal of Food Microbiology, 51(1): 67–79

    Article  CAS  PubMed  Google Scholar 

  • McMeekin TA, Chandler RE, Doe PE et al (1987) Model for the combined effect of temperature and salt concentration/water activity on the growth rate of Staphylococcus xylosus. Journal of Applied Bacteriology, 62(6): 543–550

    Article  CAS  PubMed  Google Scholar 

  • Miles DW, Ross T, Olley J, McMeekin TA (1997) Development and evaluation of a predictive model for the effect of temperature and water activity on the growth rate of Vibrio parahaemolyticus. International Journal of Food Microbiology, 38(2–3): 133–142

    Article  CAS  PubMed  Google Scholar 

  • Poschet F, Bernaerts K, Geeraerd AH et al (2004) Sensitivity analysis of microbial growth parameter distributions with respect to data quality and quantity by using Monte Carlo analysis. Mathematics and Computers in Simulation, 65(3): 231–243

    Article  Google Scholar 

  • Poschet F, Vereecken K, Geeraerd A et al (2005) Analysis of a novel class of predictive microbial growth models and application to coculture growth. International Journal of Food Microbiology, 100(1–3): 107–124

    Article  CAS  PubMed  Google Scholar 

  • Ratkowsky DA (2004) Model fitting and uncertainty. In: McKellar RC, Lu X (eds) Modeling microbial responses in foods. CRC Press, Boca Raton

    Google Scholar 

  • Ratkowsky DA, Lowry RK, McMeekin TA et al (1983) Model for bacterial culture growth rate throughout the entire biokinetic temperature range. Journal of Bacteriology, 154(3): 1222–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratkowsky DA, Olley J, McMeekin TA, Ball A (1982) Relation between temperature and growth rate of bacterial cultures. Journal of Bacteriology, 149(1): 1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross T, Dalgaard P (2004) Secondary models. In: McKellar RC, Lu X (eds) Modeling microbial responses in foods. CRC Press, Boca Raton

    Google Scholar 

  • Schoolfield RM, Sharpe PJH, Magnuson CE (1981) Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. Journal of Theoretical Biology, 88(4): 719–731

    Article  CAS  PubMed  Google Scholar 

  • Swinnen IAM, Bernaerts K, Dens EJ (2004) Predictive modelling of the microbial lag phase: a review. International Journal of Food Microbiology, 94(2): 137–159

    Article  CAS  PubMed  Google Scholar 

  • Swinnen IAM, Bernaerts K, Gysemans K, Van Impe J F (2005) Quantifying microbial lag phenomena due to a sudden rise in temperature: a systematic macroscopic study. International Journal of Food Microbiology, 100(1–3): 85–96

    Article  CAS  PubMed  Google Scholar 

  • Van Derlinden E, Van Impe JF (2012) Modeling growth rates as a function of temperature: model performance evaluation with focus on the suboptimal temperature range. International Journal of Food Microbiology, 158(1): 73–78

    Article  PubMed  Google Scholar 

  • Zwietering MH, Wijtzes T, Rombouts FM, van’t Riet K (1993) A decision support system for prediction of the microbial spoilage in foods. Journal of Industrial Microbiology, 12(3–5): 324–329

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Gardini, F., Parente, E. (2013). Modelli secondari per lo sviluppo microbico. In: Gardini, F., Parente, E. (eds) Manuale di microbiologia predittiva. Food. Springer, Milano. https://doi.org/10.1007/978-88-470-5355-7_6

Download citation

Publish with us

Policies and ethics