Skip to main content

Νormal Bone Marrow: Anatomy, Function, Conversion, and Reconversion

  • Chapter
  • First Online:
Bone Marrow MRI

Abstract

Bone marrow is the organ responsible for blood cell production in humans. It is also the fourth largest organ of the body by weight, following bone, muscle, and fat [1]. It is estimated that, in humans, bone marrow accounts for approximately 4–5 % of the total body weight [2, 3]. Marrow is soft and pulpy and fills the osseous medullary cavities. The latter consist of multiple small spaces between trabeculae and larger cavities within the shafts of long bones. Although the evolutionary processes that led to confinement of hematopoiesis to the osseous medullary cavities are not yet fully understood, there is a rapidly evolving field of research examining the close association between skeletal and hematopoietic tissue (e.g., the role of endosteal osteoblasts in regulating the hematopoietic microenvironment through their interaction with hematopoietic stem cells) [4, 5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vogler JB 3rd, Murphy WA (1988) Bone marrow imaging. Radiology 168:679–693

    Article  PubMed  Google Scholar 

  2. Picker LJ, Siegelman MH (1999) Lymphoid tissues and organs. In: Paul WE (ed) Fundamental immunology, 4th edn. Lippincott-Raven, Philadelphia, pp 479–531

    Google Scholar 

  3. Takaku T, Malide D, Chen J et al (2010) Hematopoiesis in 3 dimensions: human and murine bone marrow architecture visualized by confocal microscopy. Blood 116(15):e41–e55

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Garrett RW, Emerson SG (2009) Bone and blood vessels: the hard and the soft of hematopoietic stem cell niches. Cell Stem Cell 4:503–506

    Article  CAS  PubMed  Google Scholar 

  5. Bianco P (2011) Bone and the hematopoietic niche: a tale of two stem cells. Blood 117:5281–5288

    Article  CAS  PubMed  Google Scholar 

  6. Snyder WS, Cook MJ, Nasset ES et al (1975) Report of the task group on reference man. In: International commission on radiological protection. Pergamon Press, Oxford, pp 85–98

    Google Scholar 

  7. Hartsock RJ, Smith EB, Petty CS (1965) Normal variations with aging of the amount of hematopoietic tissue in bone marrow from the anterior iliac crest. Am J Clin Pathol 43:326–331

    CAS  PubMed  Google Scholar 

  8. Piney A (1922) The anatomy of the bone marrow with special reference to the distribution of the red marrow. Br Med J 28:792–795

    Google Scholar 

  9. Junqueira LC, Carneiro J (1980) The life cycle of blood cells. In: Basic histology: text and atlas. Lange, California, pp 73–79

    Google Scholar 

  10. Travlos GS (2006) Normal structure, function, and histology of the bone marrow. Toxicol Pathol 34:548–565

    Article  PubMed  Google Scholar 

  11. Kricun ME (1985) Red-yellow marrow conversion: its effect on the location of some solitary bone lesions. Skeletal Radiol 14:10–19

    Article  CAS  PubMed  Google Scholar 

  12. Krebsbach PH, Kuznetsof SA, Bianco P et al (1999) Bone marrow stromal cells: characterization and clinical application. Crit Rev Oral Biol Med 10(2):165–181

    Article  CAS  PubMed  Google Scholar 

  13. Bianco P, Riminucci M, Gronthos S et al (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19(3):180–192

    Article  CAS  PubMed  Google Scholar 

  14. Valdez R, Zutter M, Florea AD et al (2012) Hematopathology. In: Rubin R, Strayer DS (eds) Rubin’s pathology: clinicopathologic foundations of medicine, 6th edn. Lippincott Williams & Wilkins, Philadelphia/Baltimore/New York/London/Buenos Aires/Honk Kong/Sydney/Tokyo, pp 947–1036

    Google Scholar 

  15. Lichtman MA, Koury MJ (2010) Structure of the marrow and the hematopoietic microenvironment. In: Kaushansky K, Lichtman MA, Beutler E, Kipps TJ, Seligsohn U, Prchal JT (eds) Williams hematology, 8th edn. McGraw-Hill, New York, pp 62–104

    Google Scholar 

  16. Weiss L, Geduldig U (1991) Barrier cells: stromal regulation of hematopoiesis and blood cell release in normal and stressed murine bone marrow. Blood 78(4):975–990

    CAS  PubMed  Google Scholar 

  17. Neumann E (1868) Über die Bedeutung des Knochenmarks für die Blutbildung. Centralblatt für die Med Wissenschaft 6:689

    Google Scholar 

  18. Bizzozero G (1868) Sulla funzione ematopoetica del midollo delle ossa. Comunicazione preventiva. Gazz Med Ital Lombardia 28:381–382

    Google Scholar 

  19. Zech NH, Shkumatov A, Koestenbauer S (2007) The magic behind stem cells. J Assist Reprod Genet 24(6):208–214

    Article  PubMed Central  PubMed  Google Scholar 

  20. Neumann E (1882) Das Gesetz über die Verbreitung des gelben und roten Knochenmarks. Centralblatt für die Med Wissenschaft 18:321–323

    Google Scholar 

  21. Baron MH (2013) Concise review: early embryonic erythropoiesis: not so primitive after al. Stem Cells 31:849–856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Baron MH (2003) Embryonic origin of mammalian hematopoiesis. Exp Hematol 31(12):1160–1169

    Article  CAS  PubMed  Google Scholar 

  23. Chen LT, Weiss L (1975) The development of vertebral bone marrow of human fetuses. Blood 46:389–408

    CAS  PubMed  Google Scholar 

  24. Charbord P, Tavian M, Humeau L et al (1996) Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment. Blood 87(10):​4109–4119

    CAS  PubMed  Google Scholar 

  25. Ricci C, Cova M, Kang YS et al (1990) Normal age-related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. Radiology 177:83–88

    Article  CAS  PubMed  Google Scholar 

  26. Vande Berg BC, Malghem J, Lecouvet FE et al (1998) Magnetic resonance imaging of the normal bone marrow. Skeletal Radiol 27:471–483

    Article  CAS  PubMed  Google Scholar 

  27. Emery JL, Follett GF (1964) Regression of bone-marrow haemopoiesis from the terminal digits in the foetus and infant. Br J Haematol 10:485–489

    Article  CAS  PubMed  Google Scholar 

  28. Huggins C, Blocksom BH Jr, Noonan WJ (1936) Temperature conditions in the bone marrow of rabbit, pigeon, and albino rat. Am J Physiol 115:395

    Google Scholar 

  29. Huggins C, Blocksom BH Jr, Noonan WJ (1936) Changes in outlying bone marrow accompanying a local increase in temperature within physiologic limits. J Exp Med 64:253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Maniatis A, Tavassoli M, Crosby WH (1971) Factors affecting the conversion of yellow to red marrow. Blood 37:581–586

    CAS  PubMed  Google Scholar 

  31. Tavassoli M, Yoffey JM (1983) Bone marrow: structure and function. Alan R. Liss, New York

    Google Scholar 

  32. Gurevitch O, Slavin S, Feldman AG (2007) Conversion of red bone marrow into yellow – cause and mechanisms. Med Hypotheses 69(3):531–536

    Article  PubMed  Google Scholar 

  33. Jaramillo D, Laor T, Hoffer FA et al (1991) Epiphyseal marrow in infancy: MR imaging. Radiology 180:809–812

    Article  CAS  PubMed  Google Scholar 

  34. Dunnill MS, Anderson JA, Whitehead R (1967) Quantitative histological studies on age changes in bone. J Pathol Bacteriol 94:275–291

    Article  CAS  PubMed  Google Scholar 

  35. Kugel H, Jung C, Schulte O et al (2001) Age- and sex-specific differences in the 1H-spectrum of vertebral bone marrow. J Magn Reson Imaging 13:263–268

    Article  CAS  PubMed  Google Scholar 

  36. Griffith JF, Yeung DKW, Ting Ma H et al (2012) Bone marrow fat content in the elderly: a reversal of sex difference seen in younger subjects. J Magn Reson Imaging 36:225–230

    Article  PubMed  Google Scholar 

  37. Griffith JF, Yeung DKW, Antonio GE et al (2006) Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology 241:831–838

    Article  PubMed  Google Scholar 

  38. Oehlbeck LWF, Robscheit-Robbins FS, Whipple GH (1932) Marrow hyperplasia and hemoglobin reserve in experimental anemia due to bleeding. J Exp Med 56:425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Hartman RP, Sundaram M, Okuno SH et al (2004) Effect of granulocyte-stimulating factors on marrow of adult patients with musculoskeletal malignancies: incidence and MRI findings. AJR Am J Roentgenol 183(3):645–653

    Article  PubMed  Google Scholar 

  40. Custer RP, Ahlfeldt FE (1932) Studies on the structure and function of bone marrow. J Lab Clin Med 17:960

    Google Scholar 

  41. Shillingford JP (1950) The red bone marrow in heart failure. J Clin Pathol 3:24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Ryan SP, Weinberger E, White KS et al (1995) MR imaging of bone marrow in children with osteosarcoma: effect of granulocyte colony-stimulating factor. AJR Am J Roentgenol 165(4):915–920

    Article  CAS  PubMed  Google Scholar 

  43. Fletcher BD, Wall JE, Hanna SL (1993) Effect of hematopoietic growth factors on MR images of bone marrow in children undergoing chemotherapy. Radiology 189(3):745–751

    Article  CAS  PubMed  Google Scholar 

  44. Moulopoulos LA (2010) Effects of treatment on bone marrow. In: Husband JE, Reznek RH (eds) Husband & Reznek’s imaging in oncology, 3rd edn. Informa Healthcare, London, pp 1259–1271

    Google Scholar 

  45. Ollivier L, Gerber S, Vanel D (2006) Improving the interpretation of bone marrow imaging in cancer patients. Cancer Imaging 6:194–198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lia Angela Moulopoulos .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Italia

About this chapter

Cite this chapter

Moulopoulos, L.A., Koutoulidis, V. (2015). Νormal Bone Marrow: Anatomy, Function, Conversion, and Reconversion. In: Bone Marrow MRI. Springer, Milano. https://doi.org/10.1007/978-88-470-5316-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5316-8_1

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5315-1

  • Online ISBN: 978-88-470-5316-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics