Skip to main content

Abstract

An introduction to the CSL (Continuous Spontaneous Localization) theory of dynamical wave function collapse is provided, including a derivation of CSL from two postulates, a new result. There follows a review of applications to a free particle, or to a ‘small’ rigid cluster of free particles, in a single wave-packet and in interfering packets: the latter result is new. [Editors note: for a video of the talk given by Prof. Pearle at the Aharonov-80 conference in 2012 at Chapman University, see quantum.chapman.edu/talk-11.]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Attempts to make a relativistic CSl have had a long and unsuccessful history: [21], [22], [23], [24] …until the recent successful work by D.J. Bedingham [25].

  2. 2.

    The internal excitation of the matter is not discussed here. Collapse narrows wave packets, resulting in atomic and nuclear ‘anomalous’ excitation (i.e., collapse-generated, not predicted by standard quantum theory) [1013]. Experimental limits on such excitation strongly suggests the effective mass-proportionality of the collapse rate, as we have mentioned. Incidentally, it can be argued [19] that the increasing particle energy entails a concomitant decrease in the w-field energy, so total energy is conserved.

  3. 3.

    How can Eq. (9.49), where w is just a function of t, arise from Eq. (9.41), where w is a field, depending upon \({\bf x}\) as well as t? As far as I am aware, this has not been discussed before, so we treat it in Appendix B. More generally, it involves changing the collapse-generating operators A α to a new, equivalent set, with concomitant change of white noise functions w α(t) to a new, equivalent set.

References

  1. W. Feller, An Introduction to Probability Theory and Its Applications (Wiley, New York, 1950). Chap. 14

    MATH  Google Scholar 

  2. P. Pearle, Found. Phys. 12, 249 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  3. P. Pearle, Phys. Rev. A 39, 2277 (1989)

    Article  ADS  Google Scholar 

  4. P. Pearle, Phys. Rev. D 13, 857 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  5. G. Lindblad, Commun. Math. Phys. 48, 119 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. V. Gorini, A. Kossakowski, E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  7. P. Pearle, Eur. J. Phys. 33, 805 (2012)

    Article  MATH  Google Scholar 

  8. Ł.D. Carson, W.R. Miles, S.S. Stevens, Vision, hearing and aeronautical design. Sci. Mon. 56, 446 (1943)

    ADS  Google Scholar 

  9. G.C. Ghirardi, P. Pearle, A. Rimini, Phys. Rev. A 42, 78 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  10. P. Pearle, E. Squires, Phys. Rev. Lett. 73, 1 (1994)

    Article  ADS  Google Scholar 

  11. B. Collett, P. Pearle, F. Avignone, S. Nussinov, Found. Phys. 25, 1399 (1995)

    Article  ADS  Google Scholar 

  12. P. Pearle, J. Ring, J.I. Collar, F.T. Avignone, Found. Phys. 29, 465 (1999)

    Article  Google Scholar 

  13. G. Jones, P. Pearle, J. Ring, Found. Phys. 34, 1467 (2004)

    Article  ADS  Google Scholar 

  14. W. Feldmann, R. Tumulka, J. Phys. A, Math. Theor. 45, 065304 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  15. G.C. Ghirardi, A. Rimini, T. Weber, Phys. Rev. D 34, 470 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. G.C. Ghirardi, A. Rimini, T. Weber, Phys. Rev. D 36, 3287 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  17. G.C. Ghirardi, A. Rimini, T. Weber, Found. Phys. 18, 1 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  18. S.L. Adler, J. Phys. A 40, 2935 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. P. Pearle, Phys. Rev. A 72, 022112 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  20. P. Pearle, Phys. Rev. A 71, 032101 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  21. P. Pearle, in Sixty-Two Years of Uncertainty, ed. by A. Miller (Plenum, New York, 1990), p. 193

    Chapter  Google Scholar 

  22. G.C. Ghirardi, R. Grassi, P. Pearle, Found. Phys. 20, 1271 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  23. P. Pearle, Phys. Rev. A 59, 80 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  24. O. Nicrosini, A. Rimini, Found. Phys. 33, 1061 (2003)

    Article  MathSciNet  Google Scholar 

  25. D.J. Bedingham, Found. Phys. 41, 686 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  26. Y. Aharonov, D. Rohrlich, Quantum Paradoxes (Wiley, Weinheim, 2005). Chap. 5

    Book  MATH  Google Scholar 

  27. L. Diosi, Phys. Rev. A 40, 1165 (1989)

    Article  ADS  Google Scholar 

  28. B. Collett, P. Pearle, Found. Phys. 33, 1495 (2003). Appendix B, pp. 1524–1529

    Article  MathSciNet  Google Scholar 

  29. A. Bassi, J. Phys. A, Math. Gen. 38, 3173 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Pearle .

Editor information

Editors and Affiliations

Appendices

Appendix A: Proof That R and S Must be Diagonal

We prove here that the real symmetric operators R and S in the Stratonovich Schrödinger equation for the un-normalized state vector,

$$ d|\phi,t\rangle=\bigl[RdB'+Sdt\bigr]|\phi,t\rangle $$
(9.77)

must be diagonal in the |a n 〉 basis. This is in order that Eq. (9.77) give rise to the Itô gambler’s ruin condition Eq. (9.5),

$$ dx_{n}(t)=b_{n}({\bf x})dB(t). $$
(9.78)

After putting Eq. (9.4), dB′=dB+fdt, into Eq. (9.77), we convert that Stratonovich equation to an Itô equation, with the result

$$ d|\phi,t\rangle=[RdB+Vdt]|\phi,t\rangle\quad\hbox{where }V\equiv S+Rf+ \frac {\lambda}{2}R^{2}. $$
(9.79)

We note that V is also a real symmetric operator and, if we show R and V must be diagonal, then S must also be diagonal.

Using the rules for manipulating Itô equations, it is straightforward to find

$$\begin{aligned} d|\phi,t\rangle\langle\phi,t|={}&\bigl\{[RdB+Vdt],|\phi,t\rangle\langle \phi ,t|\bigr\} +\lambda dtR|\phi,t\rangle\langle\phi ,t|R, \end{aligned}$$
(9.80a)
$$\begin{aligned} d\langle\phi,t|\phi,t\rangle={}&2[ \langle\phi,t|R|\phi,t\rangle dB + \langle \phi,t|V|\phi,t\rangle dt ] +\lambda dt\langle\phi,t|R^{2}|\phi,t\rangle , \end{aligned}$$
(9.80b)

where {M,N}≡MN+NM. Defining the density matrix ρ(t)≡|ϕ,t〉〈ϕ,t|/〈ϕ,t|ϕ,t〉 and \(\overline{M}\equiv\hbox{Trace} M\rho\), we obtain from Eqs. (9.80a)–(9.80b) and the Itô rules:

$$\begin{aligned} d\rho =&\bigl[\{R,\rho\}-2\rho\overline{R}\bigr]dB+dt\bigl[\{V,\rho \}-2\rho\overline {V}\bigr] \\ &{}+\lambda dt \bigl[\bigl[R\rho R-\rho\overline{R^{2}}\bigr]-2 \overline{R}\bigl[\{R,\rho\} -2\rho\overline{R}\bigr] \bigr]. \end{aligned}$$
(9.81)

Now, x n (t)=〈a n |ρ(t)|a n 〉. Thus, in order that the diagonal elements of Eq. (9.81) agree with Eq. (9.78), we see that the diagonal elements of Eq. (9.81) which do not multiply dB must vanish for arbitrary ρ:

$$ 0=\bigl[\{V,\rho\}_{nn}-2\rho_{nn}\overline{V} \bigr]+\lambda \bigl[\bigl[(R\rho R)_{nn}-\rho_{nn} \overline{R^{2}}\bigr] -2\overline{R}\bigl[\{R,\rho\}_{nn}-2\rho _{nn}\overline{R}\bigr] \bigr], $$
(9.82)

where M nm ≡〈a n |M|a m

First, suppose that ρ mm =1, where mn, and all other matrix elements of ρ vanish. It follows from Eq. (9.82) that

$$ 0=(R\rho R)_{nn}=(R_{nm})^{2}. $$
(9.83)

That is, all the off-diagonal elements of R vanish, so R is diagonal.

Second, choose a density matrix for which ρ nn , ρ mm =1−ρ nn , ρ nm do not vanish, but all other matrix elements of ρ do vanish. Then, using the diagonal nature of R, Eq. (9.82) may be written as

$$\begin{aligned} 0 =&2V_{nm}\rho_{nm}[1-2\rho_{nn}] \\ &{}+\rho_{nn}[1-\rho_{nn}] [2(V_{nn}-V_{mm}) \\ &{}+\lambda(R_{nn}-R_{mm})\bigl[(R_{nn}+R_{mm}) \\ &{}-4\bigl(R_{nn}\rho_{nn}+R_{mm}(1- \rho_{nn})\bigr) \bigr]. \end{aligned}$$
(9.84)

For fixed ρ nn , a viable density matrix (non-negative eigenvalues which add up to 1) exists for \(|\rho_{nm}|\leq\sqrt{\rho _{nn}(1-\rho_{nn})}\). But, as ρ nm is varied, the first term in Eq. (9.84) varies while the rest of the terms remain fixed. Thus, the first term must vanish, and this means that V nm =0 for nm, i.e., V is diagonal as well as R.

Appendix B: Transformation of Operators and White Noise

Consider the general CSL form for the evolution of the state vector, Eq. (9.33)

$$ |\phi,t\rangle=\mathcal{T}e^{-\int_{0}^{t}dt'\{iH(t')+\frac{1}{4\lambda }\sum_{\alpha}[w^{\alpha}(t')-2\lambda A^{\alpha}]^{2}\}}|\phi,0\rangle $$
(9.85)

We introduce a real orthonormal set of vectors \(u_{\beta }^{\alpha}\), i.e., \(\sum_{\alpha}u_{\beta}^{\alpha}u_{\beta'}^{\alpha }=\delta_{\beta\beta'}\), \(\sum_{\beta}u_{\beta}^{\alpha}u_{\beta }^{\alpha'}=\delta_{\alpha\alpha'}\). Defining white noise functions v β(t) and complete commuting set of operators Z β by \(w^{\alpha}(t)\equiv\sum_{\beta} u_{\beta}^{\alpha}v^{\beta}(t)\) and \(A^{\alpha}(t)\equiv\sum_{\beta} u_{\beta}^{\alpha}Z^{\beta}(t)\), one readily sees that, in the exponent of Eq. (9.85),

$$ \sum_{\alpha}\bigl[w^{\alpha}(t)-2 \lambda A^{\alpha}\bigr]^{2}=\sum_{\beta } \bigl[v^{\beta}(t)-2\lambda Z^{\beta}\bigr]^{2}. $$
(9.86)

The Jacobian of the transformation from w’s to v’s is 1 so, in using the Probability Rule (9.32b), Dw=Dv.

We wish to apply such a transformation to Eqs. (9.41), (9.42) which, for simplicity, we limit to one-dimensional space:

$$\begin{aligned} |\phi,t\rangle&=\mathcal{T}e^{-i\int_{0}^{t}dt'\frac{1}{2MN}\hat {P}^{2}} e^{-\frac{1}{4\lambda}\int_{0}^{t}dt'\int dx'[w(x',t')-2\lambda NA(x')]^{2}}|\phi,0\rangle, \end{aligned}$$
(9.87a)
$$\begin{aligned} A\bigl(x'\bigr)&\equiv\frac{1}{(\pi a^{2})^{1/4}}e^{-\frac{1}{2a^{2}}[x'-\hat {X}]^{2}}. \end{aligned}$$
(9.87b)

We shall use as orthonormal functions the harmonic oscillator wave functions

$$ u_{n}(x)\equiv C_{n}H_{n}(x/a)e^{-\frac{1}{2a^{2}}x^{2}} \quad\mbox{where } C_{n}\equiv\frac{1}{\sqrt{\pi^{1/2}2^{n}n!a}}. $$
(9.88)

With the definitions v n (t)≡∫dxw(x,t)u n (x) and \(\hat{Z}_{n}\equiv\int dx A(x)u_{n}(x)\), the exponent in Eq. (9.87a) may be written as

$$\begin{aligned} &-\frac{1}{4\lambda}\int_{0}^{t}dt' \int dx'\bigl[w\bigl(x',t'\bigr)-2\lambda NA\bigl(x'\bigr)\bigr]^{2} \\ &\quad=-\frac{1}{4\lambda}\sum_{n=0}^{\infty} \int_{0}^{t}dt'\bigl[v_{n} \bigl(t'\bigr)-2\lambda N\hat{Z}_{n}\bigr]^{2}. \end{aligned}$$
(9.89)

Thus, we see how a white-noise field gets converted to an equivalent sum of white noise functions.

Using the identity \(\exp(-t^{2}+2tz)=\sum_{n=0}^{\infty }t^{n}H_{n}(z)/n!\), with \(t\equiv\hat{X}/2a\), zx′/a, we find

$$\begin{aligned} \hat{Z}_{n} =&\int dx\frac{1}{(\pi a^{2})^{1/4}}e^{-\frac {1}{2a^{2}}[x'-\hat{X}]^{2}} u_{n}(x) \\ =&\frac{1}{C_{n}(\pi a^{2})^{1/4}}e^{-\frac{1}{4a^{2}}\hat{X}^{2}}\sum_{m=0}^{\infty} \frac{(\hat{X}/2a)^{m}}{m!}\int dx u_{m}(x)u_{n}(x) \\ =&e^{-\frac{1}{4a^{2}}\hat{X}^{2}}\frac{(\hat{X}/\sqrt{2}a)^{n}}{\sqrt{n!}}. \end{aligned}$$
(9.90)

This leads to the density matrix evolution equation

$$\begin{aligned} \frac{d\rho(t)}{d t} =&-i \biggl[\frac{\hat{P}^{2}}{2MN},\rho(t) \biggr] \\ &{} -\frac{\lambda N^{2}}{2}\sum_{n=0}^{\infty} \biggl[e^{-\frac{1}{4a^{2}}\hat {X}^{2}}\frac{(\hat{X}/\sqrt{2}a)^{n}}{\sqrt{n!}}, \biggl[e^{-\frac{1}{4a^{2}}\hat{X}^{2}} \frac{(\hat{X}/\sqrt{2}a)^{n}}{\sqrt {n!}}, \rho(t)\biggr]\biggr]. \end{aligned}$$
(9.91)

If we expand \(\exp-\hat{X}^{2}/4a^{2}\), we see that the n=0 term goes as \((\hat{X}/a)^{4}\) and the rest of the terms go as \((\hat{X}/a)^{n}\) to lowest order. Therefore, the lowest order term comes from n=1. Upon neglect of the higher order terms, this gives the density matrix evolution equation

$$ \frac{d\rho(t)}{d t}=-i \biggl[\frac{\hat{P}^{2}}{2MN},\rho(t) \biggr] - \frac{\lambda N^{2}}{4a^{2}}\bigl[\hat{X},\bigl[\hat{X}, \rho(t)\bigr]\bigr], $$
(9.92)

which is identical to the one-dimensional version of Eq. (9.48).

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this paper

Cite this paper

Pearle, P. (2014). Collapse Miscellany. In: Struppa, D., Tollaksen, J. (eds) Quantum Theory: A Two-Time Success Story. Springer, Milano. https://doi.org/10.1007/978-88-470-5217-8_9

Download citation

Publish with us

Policies and ethics