Skip to main content

Quantum Weak Measurements and Cosmology

  • Conference paper
Quantum Theory: A Two-Time Success Story

Abstract

The indeterminism of quantum mechanics generally permits the independent specification of both an initial and a final condition on the state. Quantum pre- and post-selection of states opens up a new, experimentally testable, sector of quantum mechanics, when combined with statistical averages of identical weak measurements. In this paper I apply the theory of weak quantum measurements combined with pre- and post-selection to cosmology. Here, pre-selection means specifying the wave function of the universe or, in a popular semi-classical approximation, the initial quantum state of a subset of quantum fields propagating in a classical background spacetime. The novel feature is post-selection: the additional specification of a condition on the quantum state in the far future. I discuss “natural” final conditions, and show how they may lead to potentially large and observable effects at the present cosmological epoch. I also discuss how pre- and post-selected quantum fields couple to gravity via the DeWitt-Schwinger effective action prescription, in contrast to the expectation value of the stress-energy-momentum tensor, resolving a vigorous debate from the 1970s. The paper thus provides a framework for computing large-scale cosmological effects arising from this new sector of quantum mechanics. A simple experimental test is proposed. [Editors note: for a video of the talk given by Prof. Davies at the Aharonov-80 conference in 2012 at Chapman University, see quantum.chapman.edu/talk-13.]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Aharonov, E. Gruss, Two-time interpretation of quantum mechanics (2005). arXiv:quant-ph/0507269

  2. Y. Aharonov, D. Rohrlich, Quantum Paradoxes (Wiley-VCH, Weinheim, 2005)

    Chapter  Google Scholar 

  3. J. Hartle, S. Hawking, Wave function of the universe. Phys. Rev. D 28(12), 2960 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  4. N.D. Birrell, P.C.W. Davies, Curved Space. Quantum Fields (Cambridge University Press, Cambridge, 1982)

    Chapter  Google Scholar 

  5. P.C.W. Davies, C.H. Lineweaver, M. Ruse (eds.), Complexity and the Arrow of Time (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  6. F. Hoyle, J.V. Narlikar, Electrodynamics of direct interparticle action. I. The quantum mechanical response of the universe. Ann. Phys. 54, 207–239 (1969)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. F.J. Tipler, Cosmological limits on computation. Int. J. Theor. Phys. 25(6), 617–661 (1986). doi:10.1007/BF00670475

    Article  MathSciNet  Google Scholar 

  8. S.W. Hawking, R. Penrose, The Nature of Space and Time (Princeton University Press, Princeton, 1996)

    MATH  Google Scholar 

  9. H. Price, Time’s Arrow and Archimedes’ Point: New Directions for the Physics of Time (Oxford University Press, New York, 1996)

    Google Scholar 

  10. M. Gell-Mann, J.B. Hartle, Complexity, entropy and the physics of information, in Time Symmetry and Asymmetry in Quantum Mechanics and Quantum Cosmology, vol. VIII, ed. by W.H. Zurek (Addison-Wesley, Reading, 1990), p. 425

    Google Scholar 

  11. D.N. Page, No time asymmetry from quantum mechanics. Phys. Rev. Lett. 70, 4034–4037 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. C. Bernard, A. Duncan, Regularization and renormalization of quantum field theory in curved space-time. Ann. Phys. 107, 201–222 (1977)

    Article  ADS  MATH  Google Scholar 

  13. Yu.V. Pavlov, Nonconformal scalar field in a homogeneous isotropic space and the method of Hamiltonian diagonalization (2000). gr-qc/0012082

  14. T.S. Bunch, P.C.W. Davies, Quantum field theory in de Sitter space: renormalization by point-splitting. Proc. R. Soc. Lond. Ser. A 360, 117 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  15. B.S. DeWitt, Dynamical Theory of Groups and Fields (Gordon and Breach, New York, 1965)

    MATH  Google Scholar 

  16. D.G. Boulware, Quantum field theory in Schwarzschild and Rindler spaces. Phys. Rev. D 11, 1404–1424 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  17. J.B. Hartle, B.L. Hu, Quantum effects in the early universe. II. Effective action for scalar fields in homogeneous cosmologies with small anisotropy. Phys. Rev. D 20, 1772–1782 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  18. J.S. Dowker, R. Critchley, Effective Lagrangian and energy-momentum tensor in de Sitter space. Phys. Rev. D 13, 3224–3232 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  19. B.S. DeWitt, Phys. Rep. 19C, 297 (1975)

    ADS  Google Scholar 

  20. S.W. Hawking, Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  21. R.B. Partridge, Absorber theory of radiation and the future of the universe. Nature 244, 263–265 (1973)

    Article  ADS  Google Scholar 

  22. P.C.W. Davies, Is the universe transparent or opaque? J. Phys. A, Gen. Phys. 5, 1722–1737 (1972)

    Article  ADS  Google Scholar 

  23. P.C.W. Davies, J. Twamley, Time-symmetric cosmology and the opacity of the future light cone. Class. Quantum Gravity 10, 931 (1993). doi:10.1088/0264-9381/10/5/011

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I have greatly benefited from discussions with Alonso Botero, Jeff Tollaksen and Yakir Aharonov in preparing this paper. I would like to thank Katherine Lee and Saugata Chatterjee for their help reformatting and editing the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. W. Davies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this paper

Cite this paper

Davies, P.C.W. (2014). Quantum Weak Measurements and Cosmology. In: Struppa, D., Tollaksen, J. (eds) Quantum Theory: A Two-Time Success Story. Springer, Milano. https://doi.org/10.1007/978-88-470-5217-8_7

Download citation

Publish with us

Policies and ethics