Skip to main content

Part of the book series: SIMAI Springer Series ((SEMA SIMAI,volume 2))

  • 1015 Accesses

Abstract

This chapter deals mainly with the numerical analysis of the following one-dimensional system of semilinear equations,

$$ \begin{array}{ccc} {\partial}_t{f}^{\pm}\pm {\partial}_x{f}^{\pm }=G\left({f}^{+},{f}^{-}\right), & x\in \mathbb{R}, & t>0, \end{array} $$

The bold effort the central bank had made to control the government… are but premonitions of the fate that awaits the American people should they be deluded into a perpetuation of this institution or the establishment of another like it.

Andrew Jackson

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amadori D., Gosse L., Guerra G.: Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws. Arch. Rational Mech. Anal. 162, 327–366 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barenblatt G.I.: On some steady motion of a liquid or a gas in a porous medium. Prikl. Mat. Mekh. 16, 67 (1952)

    Google Scholar 

  3. Berthon C., LeFloch P.G., Turpault R.: Late-time/stiff relaxation asymptotic-preserving approximations of hyperbolic equations. Math. Comp. (2012)

    MATH  Google Scholar 

  4. Bianchini S.: Stability of L-solutions for hyperbolic systems with coinciding shocks and rarefactions. SIAM J. Math. Anal. 33, 959–981 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Boulanger A.-C., Cancès C., Mathis H., Saleh K., Seguin N.: OSAMOAL: Optimized Simulations by Adapted Models using Asymptotic Limits. ESAIM Proc. (2012) (to appear)

    Google Scholar 

  6. Buet C., Despres B., Franck E.: Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes. Numer. Math. J. 122, 227–278 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Buet C., Despres B., Franck E.: An asymptotic preserving scheme with the maximum principle for the M1 model on distorded meshes. C. R. Math. 350, 633–638 (2012)

    Article  MATH  Google Scholar 

  8. Cargo P., Samba G.: Resolution of the time dependent P n equations by a Godunov type scheme having the diffusion limit, Math. Mod. Numer. Anal. 44, 1193–1224 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Carleman T.: Problèmes mathématiques de la théorie cinétique des gaz. Almquist Wiksells (1957)

    Google Scholar 

  10. Cercignani C., Illner R., Pulvirenti M.: The mathematical theory of dilute gases. Applied Mathematical Sciences. vol 106. Springer-Verlag, New York (1994)

    Google Scholar 

  11. Franck E., Hoch P., Navaro P., Samba G.: An asymptotic preserving scheme for P1 model using classical diffusion schemes on unstructured polygonal meshes. ESAIM: Proceedings 32, 56–75 (2011)

    Article  MATH  Google Scholar 

  12. Gabetta E., Perthame B.: Scaling limits for the Ruijgrok-Wu model of the Boltzmann equation Math. Mod. Appl. Sci. 24, 949–967 (2001)

    MATH  Google Scholar 

  13. Gosse L.: Asymptotic-Preserving and Well-Balanced scheme for the 1D Cattaneo model of chemotaxis movement in both hyperbolic and diffusive regimes. J. Math. Anal. Applic. 388, 964–983 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gosse L.: Maxwellian decay for well-balanced approximations of a super-characteristic chemotaxis model. SIAM J. Scient. Comput. 34, A520-A545 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gosse L., Toscani G.: Space Localization And Well-Balanced Schemes For Discrete Kinetic Models In Diffusive Regimes. SIAM J. Numer. Anal. 41, 641–658 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gosse L., Tzavaras A.E.: Convergence of relaxation schemes to the equations of elastodynamics, Math. Comp. 70, 555–577 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Greenberg J., Alt W.: Stability results for a diffusion equation with functional shift approximating achemotaxis model. Trans. Amer. Math. Soc. 300, 235–258 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  18. Guarguaglini F., Mascia C., Natalini R., Ribot M.: Global stability of constant states and qualitative behavior of solutions to a one dimensional hyperbolic model of chemotaxis. Discrete Contin. Dyn. Syst. Ser. B 12, 39–76 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jin S.: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations SIAM J. Sci. Comput. 21, 441–454 (1999)

    MATH  MathSciNet  Google Scholar 

  20. Jin S.: A steady-state capturing method for hyperbolic systems with geometrical source terms. Math. Mod. Numer. Anal. 35, 631–645 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jin S., Golse F., Levermore C.D.: The convergence of numerical transfer schemes in diffusive regimes I: The discrete-ordinate method. SIAM J. Numer. Anal. 36, 1333–1369 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jin S., Liu H.: Diffusion limit of a hyperbolic system with relaxation. Methods Appl. Anal. 5, 317–334 (1998)

    MATH  MathSciNet  Google Scholar 

  23. Jin S., Pareschi L., Toscani G.: Diffusive relaxation schemes for multiscale discrete-velocity kinetic equations. SIAM J. Numer. Anal. 35, 2405–2439 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Klar A.: An asymptotic induced scheme for nonstationary transport equations in the diffusive limit. SIAM J. Numer. Anal. 35, 1073–1094 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Klar A., Unterreiter A.: Uniform stability of a finite difference scheme for transport equations in diffusive regimes. SIAM J. Numer. Anal. 40, 891–913 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kružkov S.N.: First order quasilinear equations in several independant space variables. Mat. USSR Sbornik 81, 228–255 (1970)

    Google Scholar 

  27. LeFloch P., Tzavaras A.E.: Representation of weak limits and definition of nonconservative products. SIAM J. Math. Anal. 30, 1309–1342 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. LeVeque R.J.: Balancing source terms and flux gradients in high resolution Godunov methods: the quasi steady wave propagation algorithm. J. Comp. Phys. 146, 346–365 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. LeVeque R.J., Temple B.: Stability of Godunov’s method for a class of 2 × 2 systems of conservation laws. Trans. A.M.S. 288, 115–123 (1985)

    Google Scholar 

  30. Lions P.L., Toscani G.: Diffusive limit for finite velocity Boltzmann kinetic models. Rev. Mat. Iberoamericana 13, 473–513 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  31. Liu H., Wang J., Warnecke G.: Convergence of a splitting scheme applied to the Ruijgrok-Wu model of the Boltzmann equation. J. Comp. Appl. Math. 134, 343–367 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. Marcati P., Milani A.: The one-dimensional Darcy’s law as the limit of a compressible Euler flow. J. Differential Equations 84, 129–147 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  33. Naldi G., Pareschi L.: Numerical schemes for hyperbolic systems of conservation laws with stiff diffusive relaxation. SIAM J. Numer. Anal. 37, 1246–1270 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  34. Natalini R., Hanouzet B.: Weakly coupled systems of quasilinear hyperbolic equations. Diff. Integ. Equations 9, 1279–1292 (1997)

    MATH  MathSciNet  Google Scholar 

  35. Pareschi L., Russo G.: Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Scient. Comput. 25, 129–155 (2005)

    MATH  MathSciNet  Google Scholar 

  36. Platkowski T., Illner R.: Discrete velocity models of the Boltzmann equation: a survey on the mathematical aspects of the theory. SIAM Rev. 30(2), 213–255 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  37. Philip Roe L., Arora M.: Characteristic-based schemes for dispersive waves I. The method of characteristics for smooth solutions. Numer. Meth. for Partial Differ. Equ. 9, 459–505 (1993)

    Article  MATH  Google Scholar 

  38. Ruijgrok W., Wu T.T.: A completely solvable model of the nonlinear Boltzmann equation. Physica A 113, 401–416 (1982)

    Article  MathSciNet  Google Scholar 

  39. Tzavaras A.E.: On the mathematical theory of fluid dynamic limits to conservation laws. In: Malek J., Necas J., Rokyta M. (eds.) Advances in Mathematical Fluid Mechanics, pp. 192222. Springer, New York (2000)

    Google Scholar 

  40. Vol’Pert A.I.: Spaces BV and quasilinear equations. Mat. USSR Sbornik 2, 225–267 (1967)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Gosse, L. (2013). The Special Case of 2-Velocity Kinetic Models. In: Computing Qualitatively Correct Approximations of Balance Laws. SIMAI Springer Series, vol 2. Springer, Milano. https://doi.org/10.1007/978-88-470-2892-0_8

Download citation

Publish with us

Policies and ethics