Skip to main content

Part of the book series: SIMAI Springer Series ((SEMA SIMAI,volume 2))

  • 1014 Accesses

Abstract

Even more than the formers ones, the present chapter will emphasize that well-balanced methods consist essentially in recycling astutely homogeneous techniques in order to take advantage of their strong stability properties in the more delicate context of non-homogeneous systems: for instance, the well-known fact that the Godunov scheme has zero numerical viscosity at steady-state (the preservation of steady-state curves is actually a consequence of this feature). Obviously, there is a price to pay: if nearly all source terms can be reformulated painlessly as nonconservative products, the corresponding linearly degenerate fields can locally interfere with the already existing characteristic fields of the original equations, meaning that strict hyperbolicity doesn’t hold unconditionally. Such a pathological situation is referred to as non-linear resonance and led to numerous theoretical investigations. Kinetic formalism can sometimes save the day: in Chapter 6, we shall study a kinetic scheme which doesn’t suffer from any resonance issue. Hereafter, nonlinear resonance will be avoided, following the assumptions of the seminal paper [39].

Mathematicians are like Frenchmen: whatever is said to them, they translate into their own language, and forthwith it is something entirely different.

Goethe, Maximen und Reflektionen

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Rigorously, the average must be computed along the integral curve of the steady-state equation, but this is difficult to perform in practice.

  2. 2.

    Huang-Liu’s scheme suffers a little bit from its excessive numerical viscosity: indeed, at steadystate, one has \( {\mathbf{u}}_{j-\frac{1}{2}}^{+}={\mathbf{u}}_{j-\frac{1}{2}}^{-} \) for any j and the well-balanced property exists if \( 2{\mathbf{u}}_j^n={\mathbf{u}}_{j-\frac{1}{2}}^{+}+{\mathbf{u}}_{j+\frac{1}{2}}^{-} \) ,which holds only up to second-order terms in general (except for stationary curves linear in x).

References

  1. Amadori D., Gosse L., Guerra G.: Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws. Arch. Ration. Mech. Anal. 162, 327-366 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amadori D., Gosse L., Guerra G.: Godunov-type approximation for a general resonant balance law with large data. J. Diff. Eqns. 198, 233-274 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arora M., Roe P.L.: On postshock oscillations due to shock capturing schemes in unsteady flows. J. Comput. Phys. 130, 25-40 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Audusse E., Bouchut F., Bristeau M.-O., Klein R., Perthame B.: A Fast and Stable Well- balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows. SIAM J. Sci. Comput. 25, 2050-2065 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baiti P., Bressan A., Jenssen H.K.: An instability of the Godunov scheme. Comm. Pure Appl. Math. 59, 1604-1638 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bardos C., LeRoux A.Y., Nedelec J.C.: First order quasilinear equations with boundary conditions. Comm. Part. Diff. Eqns. 4, 1017-1034 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bressan A., Jenssen H.K.: On the convergence of Godunov scheme for straight line nonlinear hyperbolic systems. Chinese Annals of Mathematics (CAM) 21, 269-284 (2000)

    Google Scholar 

  8. Ben-Artzi M., Falcovitz J.: Generalized Riemann problems in computational fluid dynamics. Cambridge Monographs on Applied and Computational Mathematics vol. 11 (2003)

    Google Scholar 

  9. Bermudez A., Vazquez E.: Upwind methods for conservation laws with source terms. Comput. & fluids 23, 1049-1071 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bouchut F.: Entropy satisfying flux vector splittings and kinetic BGK models. Numer. Math. 94, 623-672 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cargo P., LeRoux A.Y.: Un schéma équilibre adapté au modèle d’atmosphère avec termes de gravité. C.R. Acad. Sc. Paris Série I 318, 73-76 (1994)

    MathSciNet  Google Scholar 

  12. Castro-Diaz M., Pardo A., Pares C.: Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique. M3AS 17, 2055-2113 (2007)

    Google Scholar 

  13. Chen G.-Q., Lefloch P.G.: Entropy flux-splittings for hyperbolic conservation laws part I: General framework. Comm. Pure Applied Math. 48, 691-729 (1994)

    Article  MATH  Google Scholar 

  14. Delestre O., Cordier S., Darboux F., James F.: A limitation of some well-balanced schemes for Shallow Water equations. C.R. Acad. Sci. Paris, Ser. I 350, 677-681 (2012)

    MATH  Google Scholar 

  15. Donat R., Marquina A.: Capturing shock reflections: An improved flux formula. J. Comput. Phys. 125, 42-58 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Eymard R., Fuhrmann J., Gärtner K.: A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local Dirichlet problems. Numer. Math. 102, 463-495 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Filbet F., Shu C.-W.: Approximation of Hyperbolic Models for Chemosensitive Movement. SIAM J. Sci. Comput. 27, 850-872

    Google Scholar 

  18. Gallouët T., Hérard J.-M., Hurisse O., A.-Y. LeRoux c, Well-balanced schemes versus fractional step method for hyperbolic systems with source terms. Calcolo 43, 217-251 (2006)

    Article  MathSciNet  Google Scholar 

  19. Gallouët T., Masella J.M.: Un schéma de Godunov approché. C. R. Acad. Sci. Paris, Série I 323,77-84 (1996)

    MATH  Google Scholar 

  20. Glaister P.: Flux difference splitting for hyperbolic systems of conservation laws with source terms. Comp. Math. Applic. 26, 79-96 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Godunov S.K.: Finite difference schemes for numerical computation of solutions of the equations of fluid dynamics. Mat. USSR Sbornik 47, 271-306 (1959)

    MATH  Google Scholar 

  22. Gosse L.: Analyse et approximation numérique de systèmes hyperboliques de lois de conservation avec termes sources. Application aux équations d’Euler et à un modèle simplifié d’écoulements diphasiques. Thèse de doctorat de l’Université Paris IX Dauphine (1997)

    Google Scholar 

  23. Gosse L.: A well-balanced flux splitting scheme designed for hyperbolic systems of conservation laws with source terms. Comput. & Math. Applic. 39, 135-159 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gosse L.: A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms. Math. Mod. Meth. Appl. Sc.

    Google Scholar 

  25. Gosse L., LeRoux A.Y.: Un schéma-équilibre adapté aux lois de conservation scalaires non- homogènes. C.R. Acad. Sc. Paris Série I 323, 543-546 (1996)

    MATH  MathSciNet  Google Scholar 

  26. Greenberg J., LeRoux A.Y.: A well balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33, 1-16 (1996)

    Article  MathSciNet  Google Scholar 

  27. Ha S.-Y., Yang T.: L1 Stability for Systems of Hyperbolic Conservation Laws with aResonant Moving Source. SIAM J. Math. Anal. 34, 1226-1251 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Helzel C., LeVeque R.J., Warnecke G.: A modified fractional step method for the accurate approximation of detonation waves. SIAM J. Sci. Comput. 22, 1489-1510 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hong J.M., Temple B.: The generic solution of the Riemann problem in a neighborhood of a point of resonance for systems of nonlinear balance laws. Methods Appl. Anal. 10, 279-294 (2003)

    MATH  MathSciNet  Google Scholar 

  30. Huang L., Liu T.P.: A conservative, piecewise-steady difference scheme for transonic nozzle flow. Comput. & Math. Applic. 12A, 377-388 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  31. Isaacson E., Temple B.: Convergence of the 2 × 2 Godunov method for a general resonant nonlinear balance law. SIAM J. Appl. Math. 55, 625-640 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  32. Jeffrey A., Mvungi J.: The random choice method and the free-surface water profile after the collapse of a dam wall. Wave Motion 4, 381-389 (1982)

    Article  MATH  Google Scholar 

  33. Jenny P., Müller B.: Rankine-Hugoniot Riemann solver considering source terms and multidimensional effects. J. Comp. Phys. 145, 575-610 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  34. Jin S., Liu J.G.: The effects of numerical viscosities: slowly-moving shocks. J. Comp. Phys. 126, 373-389 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  35. LeFloch P.G., Raviart P.A.: An asymptotic expansion for the solution of the generalized Riemann problem. Part I: general theory. Ann. I.H.P. Nonlinear Analysis 5, 179-205 (1989)

    Google Scholar 

  36. LeFloch P., Tzavaras A.E.: Representation of weak limits and definition of nonconservative products. SIAM J. Math. Anal. 30, 1309-1342 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  37. LeVeque R.J.: Balancing source terms and flux gradients in high resolution Godunov methods: the quasi steady wave propagation algorithm. J. Comp. Phys. 146, 346-365 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  38. Li C., Liu T.P.: Asymptotic states for hyperbolic conservation laws with a moving source. Advances in Appl. Math. 4, 353-379 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  39. Liu T.P.: Quasilinear hyperbolic systems. Commun. Math. Phys. 68, 141-172 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  40. Liu T.P.: Nonlinear resonance for quasilinear hyperbolic equation. J. Math. Phys. 28, 25932602 (1987)

    Article  MathSciNet  Google Scholar 

  41. Marshall G., Menéndez A.N.: Numerical treatment of nonconservation forms of the equations of shallow water theory. J. Comp. Phys. 44, 167-188 (1981)

    Article  MATH  Google Scholar 

  42. Roe P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comp. Phys. 43,357-372(1981)

    Article  MATH  MathSciNet  Google Scholar 

  43. Roe P.L.: Upwind differencing schemes for hyperbolic conservation laws with source terms. In: Carasso C., Raviart P.-A., Serre D. (eds.) Nonlinear Hyperbolic Problems, pp. 41-51. Lecture Notes in Mathematics vol. 1270, Springer-Verlag, Berlin Heidelberg New York (1986)

    Google Scholar 

  44. Sod G.A.: A random choice method with application to reaction-diffusion systems in combustion. Comput. & Math. Applic. 11, 129-144 (1985)

    Article  MathSciNet  Google Scholar 

  45. Sod G.A.: A numerical study of oxygen diffusion in a spherical cell with the Michaelis-Menten oxygen uptake kinetics. J. Math. Biol. 24, 279-289 (1986)

    Article  MATH  Google Scholar 

  46. Sod G.A.: A dictionary approach to reaction-diffusion systems with nonlinear diffusion coefficients. Comput. & Math. Applic. 13, 771-783 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  47. Stiriba Y., Donat R.: A Numerical Study of Postshock Oscillations in Slowly Moving Shock Waves. Comput. & Math. Applic. 46, 719-739 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  48. Toumi I.: A weak formulation of Roe’s aproximate Riemann solver. J. Comp. Phys. 102, 360373 (1992)

    Article  MathSciNet  Google Scholar 

  49. VanLeer B.: On the relation between the upwind differencing schemes of Engquist-Oscher, Godunov and Roe. SIAM J. Sci. Stat. Comp. 5, 1-20 (1984)

    Article  Google Scholar 

  50. Weinan E.: Homogenization of scalar conservation laws with oscillatory forcing terms. SIAM J. Appl. Math. 52, 959-972 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Gosse, L. (2013). Early Well-Balanced Derivations for Various Systems. In: Computing Qualitatively Correct Approximations of Balance Laws. SIMAI Springer Series, vol 2. Springer, Milano. https://doi.org/10.1007/978-88-470-2892-0_4

Download citation

Publish with us

Policies and ethics