Skip to main content

Part of the book series: SIMAI Springer Series ((SEMA SIMAI,volume 2))

  • 1021 Accesses

Abstract

The main goal of the present Chapter is to emphasize the qualitative difference between Time-Splitting (TS, also called Fractional Step, FS) and Well-Balanced (WB) numerical schemes when it comes to computing the entropy solution [26] of a simple scalar, yet non-resonant, balance law:

$$ {\partial}_tu+{\partial}_xf(u)=k(x)g(u),\kern1.68em 0\le k\in {L}^1\cap {C}^0\left(\mathbb{R}\right) $$

A child of five would understand this. Send someone to fetch a child of five.

Groucho Marx

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Observe that it would already be problematic for an homogeneous scalar conservation law in which k ≡ 0 because its L 1 error is known to increase in time like \( \mathcal{O} \) (\( \sqrt{t}, \)) as explained in e.g. [36].

References

  1. Amadori D., Gosse L.: Transient L 1 error estimates for well-balanced schemes on non-resonant scalar balance laws, in preparation (2012)

    Google Scholar 

  2. Amadori D, Gosse L, Guerra G (2002) Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws. Arch Ration Mech Anal 162:327–366

    Article  MATH  MathSciNet  Google Scholar 

  3. Brenier Y, Levy D (2000) Dissipative Behavior of Some Fully Non-Linear KdV-Type Equations. Physica D 137:277–294

    Article  MATH  MathSciNet  Google Scholar 

  4. Bressan A.: The One-Dimensional Cauchy Problem, Hyperbolic Systems of Conservation Laws. Oxford Lecture Series in Mathematics and its Applications, vol. 20. Oxford University Press, Oxford, 2000

    Google Scholar 

  5. Calogero F, Degasperis A (1982) Spectral transfom and solitons. North Holland, Amsterdam New York Oxford

    MATH  Google Scholar 

  6. Cockburn B (2003) Continuous dependence and error estimation for viscosity methods. Acta Numerica 12:127–180

    Article  MATH  MathSciNet  Google Scholar 

  7. Cohen A., Dahmen W., DeVore R.: Some Comments on Kutznetsov’s Error Estimates, unpublished manuscript

    Google Scholar 

  8. Furihata D, Matsuo T (2010) Discrete Variational Derivative Method: A Structure-Preserving Numerical Method for Partial Differential Equations. CRC Press, Bóca Raton

    Book  MATH  Google Scholar 

  9. Gallouet T, Hérard J-M, Hurisse O, LeRoux A-Y (2006) Well-balanced schemes versus fractional step method for hyperbolic systems with source terms. Calcolo 43:217–251

    Article  MathSciNet  Google Scholar 

  10. Gosse L (1998) A priori error estimate for a well-balanced scheme designed for inhomogeneous scalar conservation laws. C.R. Acad. Sc. Paris Série I 327:467–472

    Article  MATH  MathSciNet  Google Scholar 

  11. Gosse L (2002) Localization effects and measure source terms in numerical schemes for balance laws. Math Comp 71:553–582

    Article  MATH  MathSciNet  Google Scholar 

  12. Gosse L.: Time-splitting schemes and measure source terms for a quasilinear relaxing system. M3AS 13, 1081–1101 (2003)

    Google Scholar 

  13. Gosse L (2012) Maxwellian decay for well-balanced approximations of a super-characteristic chemo-taxis model. SIAM J Scient Comput 34:520–545

    Article  Google Scholar 

  14. Greenberg J, LeRoux AY (1996) A well balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J Numer Anal 33:1–16

    Article  MathSciNet  Google Scholar 

  15. Guerra G (2004) Well-posedness for a scalar conservation law with singular nonconservative source. J Diff Eqns 206:438–469

    Article  MATH  MathSciNet  Google Scholar 

  16. Ha Y, Kim YJ (2006) Explicit solutions to a convection-reaction equation and defects of numerical schemes. J Comp Phys 220:511–531

    Article  MATH  MathSciNet  Google Scholar 

  17. Helzel C, LeVeque RJ, Warnecke G (2000) A modified fractional step method for the accurate approximation of detonation waves. SIAM J Sci Comput 22:1489–1510

    Article  MATH  MathSciNet  Google Scholar 

  18. Holden H, Karlsen KH, Lie K-A, Risebro NH (2010) Splitting Methods for Partial Differential Equations with Rough Solutions: Analysis and MATLAB programs. EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich

    Book  MATH  Google Scholar 

  19. Holden H, Karlsen KH, Risebro NH, Tao T (2011) Operator splitting for the KdV equation. Math Comput 80:821–846

    Article  MATH  MathSciNet  Google Scholar 

  20. Holden H., Risebro N.H.: Front Tracking for Hyperbolic Conservation Laws. Applied Mathematical Sciences, vol. 152. Springer-Verlag, New York (2002)

    Google Scholar 

  21. Isaacson E, Temple B (1995) Convergence of the 2 × 2 Godunov method for a general resonant nonlinear balance law. SIAM J Appl Math 55:625–640

    Article  MATH  MathSciNet  Google Scholar 

  22. Jeffrey A, Kakutani T (1972) Weak nonlinear dispersive waves: a discussion centered around the Korteweg-de Vries equation. SIAM Rev 14:582–643

    Article  MATH  MathSciNet  Google Scholar 

  23. Jin S, Kim YJ (2001) On the computation of roll waves. Math Mod Numer Anal 35:463–480

    Article  MATH  MathSciNet  Google Scholar 

  24. Karlsen KH, Risebro NH, Towers JD (2004) Front tracking for scalar balance equations. J Hyperbolic Differ Equ 1:115–148

    Article  MATH  MathSciNet  Google Scholar 

  25. Klingenstein P.: Hyperbolic Conservation Laws with Source Terms: Errors of the Shock Location. Research report 94–07. ETH Zürich (1994)

    Google Scholar 

  26. Kružkov SN (1970) First order quasilinear equations in several independant space variables. Mat USSR Sbornik 81:228–255

    Google Scholar 

  27. Kuznetsov N.N.: Accuracy of some approximate methods for computing the weak solutions of a first-order quasilinear equation. Zh. Vychisl. Mat. i Mat. Fiz. 16, 1489–1502 (1976); English transl. in USSR Comp. Math. and Math. Phys. 16, 105–119 (1976)

    Google Scholar 

  28. Lall S, Krysl P, Marsden JE (2003) Structure-preserving model reduction for mechanical systems. Physica D 184:304–318

    Article  MATH  MathSciNet  Google Scholar 

  29. Langseth JO, Tveito A, Winther R (1996) On the convergence of operator splitting applied to conservation laws with source terms. SIAM J Numer Anal 33:843–863

    Article  MATH  MathSciNet  Google Scholar 

  30. LeFloch P, Tzavaras AE (1999) Representation of weak limits and definition of nonconservative products. SIAM J Math Anal 30:1309–1342

    Article  MATH  MathSciNet  Google Scholar 

  31. Le Roux AY (1977) A Numerical Conception of Entropy for Quasi-Linear Equations. Math Comp 31:848–872

    Article  MATH  MathSciNet  Google Scholar 

  32. LeVeque R.J., Temple B.: Stability of Godunov’s method for a class of 2 × 2 systems of conservation laws. Trans. A.M.S. 288, 115–123 (1985)

    Google Scholar 

  33. LeVeque RJ, Yee HC (1990) A study of numerical methods for hyperbolic conservation laws with stiff source terms. J Comp Phys 86:187–210

    Article  MATH  MathSciNet  Google Scholar 

  34. Levi L, Peyroutet F (2001) A Time-Fractional Step Method for Conservation Law Related Obstacle Problems. Adv Appl Math 27:768–789

    Article  MATH  MathSciNet  Google Scholar 

  35. Liu TP, Yang T (1999) A New Entropy Functional for a Scalar Conservation Law. Comm Pure Applied Math 52:1427–1442

    Article  MATH  MathSciNet  Google Scholar 

  36. Lucier BJ (1985) Error bounds for the methods of Glimm, Godunov, and LeVeque. SIAM J Numer Anal 22:1074–1081

    Article  MATH  MathSciNet  Google Scholar 

  37. Mascia C, Terracina A (1999) Long-time behavior for conservation laws with source in a bounded domain. J Diff Eq 159:485–514

    Article  MATH  Google Scholar 

  38. Nessyahu H, Tadmor E, Tassa T (1994) The convergence rate of Godunov type schemes. SIAM J Numer Anal 31:1–16

    Article  MATH  MathSciNet  Google Scholar 

  39. Oran ES, Boris JP (2005) Numerical Simulation of Reactive Flow, 2nd edn. Cambridge Univ, Press, Cambridge

    MATH  Google Scholar 

  40. Sabac F (1997) The optimal convergence rate of monotone finite difference methods for hyperbolic conservation laws. SIAM J Numer Anal 34:2306–2318

    Article  MATH  MathSciNet  Google Scholar 

  41. Tang T, Teng Z-H (1995) The sharpness of Kuznetsov’s \( \mathcal{O}\left(\sqrt{\varDelta x}\right) \) L 1 -error estimate for monotone difference schemes. Math Comp 64:581–589

    MathSciNet  Google Scholar 

  42. Tang T, Teng Z-H (1995) Error bounds for fractional step methods for conservation laws with source terms. SIAM J Numer Anal 32:110–127

    Article  MATH  MathSciNet  Google Scholar 

  43. Tadmor E (1984) Numerical viscosity and the entropy condition for conservative difference schemes. Math Comp 43:369–381

    Article  MATH  MathSciNet  Google Scholar 

  44. Wang W-C (1998) On L 1 convergence rate of viscous and numerical approximate solutions of genuinely nonlinear scalar conservation laws. SIAM J Math Anal 30:38–52

    Article  MATH  MathSciNet  Google Scholar 

  45. Wang W, Shu C-W, Yee HC, Sjögreen B (2012) High order finite difference methods with sub- cell resolution for advection equations with stiff source terms. J Comput Phys 231:190–214

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Gosse, L. (2013). Lyapunov Functional for Linear Error Estimates. In: Computing Qualitatively Correct Approximations of Balance Laws. SIMAI Springer Series, vol 2. Springer, Milano. https://doi.org/10.1007/978-88-470-2892-0_3

Download citation

Publish with us

Policies and ethics