Skip to main content

Linearized BGK Model of Heat Transfer

  • Chapter
  • 1057 Accesses

Part of the book series: SIMAI Springer Series ((SEMA SIMAI,volume 2))

Abstract

In the kinetic theory of gases, a class of one-dimensional problems can be distinguished for which transverse momentum and heat transfer effects decouple. This feature is revealed by projecting the linearized Boltzmann model onto properly chosen directions (which were originally discovered by Cercignani in the sixties) in a Hilbert space. The shear flow effects follow a scalar integro -differential equation whereas the heat transfer is described by a 2 × 2 coupled system.

There are basically two approaches for the mathematical study of Boltzmann equation. The French School excelled in the study of weak solutions in the sense of Leray. Another approach aims at more quantitative understanding of physical phenomena. The latter is being revived in recent years.

Tai-Ping Liu, University of Singapore, 2008

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The notation M(v) refers to an “uniform Maxwellian” which doesn’t depend on the variables t, x. On the other hand, a “local Maxwellian” would be denoted by M (t, x, v).

  2. 2.

    k = R, the gas constant when the particle’s mass equals 1.

  3. 3.

    Up to the wrong value of Prandtl’s number of 1 against 0.7 for air.

  4. 4.

    Zero is excluded.

  5. 5.

    5 If the macroscopic mass flux vanishes, the walls are said to have “thermalized” the gas [27].

  6. 6.

    The normalization factor is \( \frac{\alpha_1{\alpha}_2\left({\delta}_1-{\delta}_2\right)}{\sqrt{\pi}\left({\alpha}_1+{\alpha}_2-{\alpha}_1{\alpha}_2\right)} \), see [6].

  7. 7.

    Actually, since themacroscopic flux term is of the order of 0.3 ≃ 10Δ x, there is only little difference between these results obtained by means of the modified matrices and the ones one can obtain with the matrices written in §3.3. However, discrepancies may worsen as Δ x is decreased.

References

  1. Amadori D., Gosse L., Guerra G.: Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws. Arch. Rational Mech. Anal. 162, 327-366 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aoki K., Cercignani C.: A technique for time-dependent boundary value problems in the kinetic theory of gases. Part I: Basic analysis. J. Appl. Math. Phys. (ZAMP) 35, 127-143 (1984)

    Google Scholar 

  3. Appell J., Kalitvin A.S., Zabrejko P.P.: Boundary value problems for integro-differential equations of Barbashin type. J. Integral Equ. Applic. 6, 1-30 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arnold A., Carrillo J.A., Tidriri M.D.: Large-time behavior of discrete equations with non- symmetric interactions. Math. Mod. Meth. in Appl. Sci. 12, 1555-1564 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bardos C., Golse F., Levermore D.: Fluid dynamic limits of kinetic equations. I. Formal derivations. J. Stat. Phys. 63, 323-344 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barichello L.B., Camargo M., Rodrigues P., Siewert C.E.: Unified Solutions to Classical Flow Problems Based on the BGK Model. ZAMP 52, 517-534 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Barichello L.B., Siewert C.E.: A discrete-ordinates solution for a non-grey model with complete frequency redistribution. JQSRT 62, 665-675 (1999)

    Article  Google Scholar 

  8. Bart G.R., Warnock R.L.: Linear integral equations of the third kind. SIAM J. Math. Anal. 4, 609-622 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bassanini P., Cercignani C., Pagani C.D.: Comparison of kinetic theory analyses of linearized heat transfer between parallel plates. Int. J. Heat Mass Transfer 10, 447-460 (1967)

    Article  Google Scholar 

  10. Bassanini P., Cercignani C., Pagani C.D.: Influence of the accommodation coefficient on the heat transfer in a rarefied gas. Int. J. Heat Mass Transfer 11, 1359-1368 (1968)

    Article  MATH  Google Scholar 

  11. Beals R.: An abstract treatment of some forward-backward problems of transport and scattering. J. Funct. Anal. 34, 1-20 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  12. Beals R., Protopopescu V.: Half-range completeness for the Fokker-Planck equation. J. Stat. Phys. 32, 565-584 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bennoune M., Lemou M., Mieussens L.: Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics. J. Comp. Phys. 227, 3781-3803 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Biryuk A., Craig W., Panferov V.: Strong solutions of the Boltzmann equation in one spatial dimension. C.R. Acad. Sci. Paris Série I 342, 843-848 (2006)

    Article  MATH  Google Scholar 

  15. Case K.M.: Elementary solutions of the transport equation and their applications. Ann. Physics 9, 1-23 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  16. Case K.M., Zweifel P.F.: Linear transport theory. Addison-Wesley series in nuclear engineering. Addison-Wesley, Boston (1967)

    MATH  Google Scholar 

  17. Cercignani C.: Elementary solutions of the linearized gas-dynamics Boltzmann equation and their application to the slip-flow problem. Ann. Physics 20, 219-233 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  18. Cercignani C.: Plane Couette flow according to the method of elementary solutions. J. Math. Anal. Applic. 11, 93-101 (1965)

    Article  MathSciNet  Google Scholar 

  19. Cercignani C.: Methods of solution of the linearized Boltzmann equation for rarefied gas dynamics. J. Quant. Spectrosc. Radiat. Transfer 11, 973-985 (1971)

    Article  MathSciNet  Google Scholar 

  20. Cercignani C.: Analytic solution of the temperature jump problem for the BGK model. TTSP 6, 29 (1977)

    MATH  MathSciNet  Google Scholar 

  21. Cercignani C.: Solution of a linearized kinetic model for an ultrarelativistic gas. J. Stat. Phys. 42, 601-620 (1986)

    Article  MathSciNet  Google Scholar 

  22. Cercignani C.: Mathematical methods in kinetic theory. Plenum, New York (1969)

    Book  MATH  Google Scholar 

  23. Cercignani C.: Slow Rarefied Flows; Theory and Application to Micro-Electro-Mechanical Systems. Progress in Mathematical Physics, Birkhäuser Verlag, Basel Boston Berlin (2006)

    MATH  Google Scholar 

  24. Cercignani C., Sernagiotto F.: The method of elementary solutions for time-dependent problems in linearized kinetic theory. Ann. Physics 30, 154-167 (1964)

    Article  MathSciNet  Google Scholar 

  25. Dalitz C.: Half-space problem of the Boltzmann equation for charged particles. J. Stat. Phys. 88, 129-144 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. De Groot E., Dalitz C.: Exact solution for a boundary value problem in semiconductor kinetic theory. J. Math. Phys. 38, 4629-4643 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Desvillettes L.: Convergence to equilibrium in large time for Boltzmann and BGK equations. Arch. Rat. Mech. Anal. 110, 73-91 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  28. Desvillettes L., Salvarani F.: Asymptotic behavior of degenerate linear transport equations. Bull. Sci. Math. 133, 848-858 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Frangi A., Frezzotti A., Lorenzani S.: On the application of the BGK kinetic model to the analysis of gas-structure interaction in MEMS. Computers and Structures 85, 810-817 (2007)

    Article  Google Scholar 

  30. Filbet F., Jin S.: A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comp. Phys. 229, 7625-7648 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Gosse L.: Transient radiative transfer in the grey case: well-balanced and asymptotic-preserving schemes built on Case’s elementary solutions. J. Quant. Spectr. & Radiat. Transfer 112, 1995- 2012(2011)

    Article  Google Scholar 

  32. Gosse L., Toscani G.: An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations. C.R. Math. Acad. Sci. Paris 334, 337-342 (2002)

    MATH  Google Scholar 

  33. Gosse L., Toscani G.: Space localization and well-balanced scheme for discrete kinetic models in diffusive regimes. SIAM J. Numer. Anal. 41, 641-658 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Greenberg J., LeRoux A.Y.: A well balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33, 1-16 (1996)

    Article  MathSciNet  Google Scholar 

  35. Greenberg W., Van der Mee C.V.M., Zweifel P.F.: Generalized kinetic equations, Integr. Equa. Oper. Theory 7, 60-95 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  36. Hadjiconstantinou N., Garcia A.: Molecular simulations of sound wave propagation in simple gases. Physics of Fluids 13, 1040-1046 (2001)

    Article  MATH  Google Scholar 

  37. Isaacson E., Temple B.: Convergence of the 2 × 2 Godunov method for a general resonant nonlinear balance law. SIAM J. Appl. Math. 55, 625-640 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  38. Jin S., Levermore D.: The discrete-ordinate method in diffusive regimes. Transp. Theor. Stat. Phys. 20, 413-439 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  39. Kadir Aziz A., French D.A., Jensen S., Kellogg R.B.: Origins, analysis, numerical analysis and numerical approximation of a forward-backward parabolic problem. Math. Modell. Numer. Anal. (M2AN) 33, 895-922 (1999)

    Google Scholar 

  40. Kaper H.: A constructive approach to the solution of a class of boundary value problems of mixed type. J. Math. Anal. Applic. 63, 691-718 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  41. Kaper H.: Boundary value problems of mixed type arising in the kinetic theory of gases. SIAM J. Math. Anal. 10, 161-178 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  42. Kaper H.: Spectral representation of an unbounded linear transformation arising in the kinetic theory of gases. SIAM J. Math. Anal. 10, 179-191 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  43. Klinc T.: On completeness of eigenfunctions of the one-speed transport equation. Commun. Math. Phys. 41, 273-279 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  44. Kremer G.M.: An Introduction to the Boltzmann Equation and Transport Processes in Gases. Interaction of Mechanics and Mathematics. Springer-Verlag, Berlin Heidelberg (2010)

    Book  MATH  Google Scholar 

  45. Kriese J.T., Chang T.S., Siewert C.E.: Elementary solutions of coupled model equations in the kinetic theory of gases. Int. J. Eng. Sci. 12, 441-470 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  46. Latyshev A.V.: The use of Case’s method to solve the linearized BGK equations for the temperature-jump problem, Progr. Math. Mech. USSR 54 (1990), 480-484.

    MATH  Google Scholar 

  47. Latyshev A.V., Yushkanov A.A.: An analytic solution of the problem of the temperature jumps and vapour density over a surface when there is a temperature gradient. J. Applied Math. Mech. 58, 259-265 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  48. LeFloch P., Tzavaras A.E.: Representation of weak limits and definition of nonconservative products. SIAM J. Math. Anal. 30, 1309-1342 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  49. Liu T.P., Yang T., Yu S.H.: Energy method for Boltzmann equation. Physica D 188, 178-192 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  50. Liu T.P., Yu S.H.: Boltzmann equation: micro-macro decomposition and positivity of shock profiles. Comm. Math. Phys. 246, 133-179 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  51. Ohwada T.: Boltzmann schemes for the compressible Navier-Stokes equations. In: Bartel T.J., Gallis M.A. (eds.) Rarefied gas dynamics: 22nd Internat. Symp., pp. 321-328 (2001)

    Google Scholar 

  52. Pareschi L., Perthame B.: A Fourier spectral method for homogeneous Boltzmann equations. Transp. Theo. Stat. Phys. 25, 369-383 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  53. Pareschi L., Russo G.: Numerical solution of the Boltzmann equation: I. spectrally accurate approximation of the collision operator. SIAM J. Numer. Anal. 37, 1217-1245 (2000)

    Google Scholar 

  54. Pareschi L., Russo G.: An introduction to the numerical analysis of the Boltzmann equation. Riv. Mat. Univ. Parma 4, 145-250 (2005)

    MATH  MathSciNet  Google Scholar 

  55. Perthame B.: Mathematical tools for kinetic equations. Bull. Amer. Math. Soc. 41, 205-244 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  56. Saint-Raymond L.: From the BGK model to the Navier-Stokes equations. Ann. Scient. Ec. Norm. Sup. 36, 271-317 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  57. Scherer C.S., Prolo Filho J.F., Barichello L.B.: An analytical approach to the unified solution of kinetic equations in rarefied gas dynamics. I Flow problems. ZAMP 60, 70-115 (2009)

    MATH  MathSciNet  Google Scholar 

  58. Scherer C.S., Prolo Filho J.F., Barichello L.B.: An analytical approach to the unified solution of kinetic equations in rarefied gas dynamics. II Heat transfer problems. ZAMP 60, 651-687 (2009)

    MATH  MathSciNet  Google Scholar 

  59. Siewert C.E.: Half-space analysis basic to the linearized Boltzmann equation. ZAMP 28, 531535 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  60. Siewert C.E.: A discrete-ordinates solution for heat transfer in a plane channel. J. Comp. Phys. 152,251-263 (1999)

    Article  MATH  Google Scholar 

  61. Siewert C.E., Burniston E.E.: Half-space analysis basic to the time-dependent BGK model in the kinetic theory of gases. J. Math. Phys. 18, 376-380 (1977)

    Article  MathSciNet  Google Scholar 

  62. Siewert C.E., Burniston E.E., Thomas Jr. J.R.: Discrete spectrum basic to kinetic theory. Phys. Fluids 16, 1532-1533 (1971)

    Article  MATH  Google Scholar 

  63. Siewert C.E., Kriese J.T.: Half-space orthogonality relations basic to the solution of time-dependent boundary value problems in the kinetic theory of gases. ZAMP 29, 199-205 (1978)

    Article  MATH  Google Scholar 

  64. Siewert C.E., Wright S.J.: Efficient eigenvalue calculations in radiative transfer. J. Quant. Spectro. Radiat. Transf., 685-688 (1999)

    Google Scholar 

  65. Thomas J.R., Siewert C.E.: Sound wave propagation in a rarefied gas. Transp. Theory Stat. Phys. 8, 219-240 (1979)

    Article  MATH  Google Scholar 

  66. Tzavaras A.E.: On the mathematical theory of fluid dynamic limits to conservation laws In: Malek. Nečas J. J., Rokyta M. (eds.) Advances in Mathematical Fluid Mechanics, pp. 192222. Springer, New York (2000)

    Google Scholar 

  67. Van der Mee C.: Exponentially dichotomous operators and applications. Birkhäuser Verlag AG, Basel Boston Berlin (2008)

    MATH  Google Scholar 

  68. Van der Mee C., Siewert C.E.: On unbounded eigenvalues in transport theory. ZAMP 34, 556561 (1983)

    Article  MathSciNet  Google Scholar 

  69. Villani C.: A review of mathematical topics in collisional kinetic theory. Handbook of Mathematical Fluid Dynamics vol. 1, pp. 71-305. North Holland (2002)

    Google Scholar 

  70. Williams M.M.R.: A review of the rarefied gas dynamics theory associated with some classical problems in flow and heat Transfer. Z. Angew. Math. Phys. 52, 500-516 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Gosse, L. (2013). Linearized BGK Model of Heat Transfer. In: Computing Qualitatively Correct Approximations of Balance Laws. SIMAI Springer Series, vol 2. Springer, Milano. https://doi.org/10.1007/978-88-470-2892-0_14

Download citation

Publish with us

Policies and ethics