Skip to main content

Kato’s Inequality in the Half Space: An Alternative Proof and Relative Improvements

  • Chapter
Geometric Properties for Parabolic and Elliptic PDE's

Part of the book series: Springer INdAM Series ((SINDAMS,volume 2))

  • 1886 Accesses

Abstract

In this paper we give an alternative proof of the optimal Kato’s inequality in the half space. The approach is based on a very classical method of Calculus of Variation due to Weirstrass (and developed by Hilbert) that usually is considered to prove that the solutions of the Euler Lagrange equation associated to a functional are, in fact, extremals. In this paper we will show how this method is well suited also to functionals that have no extremals. Moreover, we will present a class of inequalities that interpolate Kato’s inequality and Hardy’s inequality in the half space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adimurthi, Esteban, M.J.: An improved Hardy-Sobolev inequality in W 1,p and its application to Schrödinger operators. NoDEA Nonlinear Differ. Equ. Appl. 12(2), 243–263 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adimurthi, Chaudhuri, N., Ramaswamy, M.: An improved Hardy-Sobolev inequality and its application. Proc. Am. Math. Soc. 130(2), 485–505 (2002)

    Article  MathSciNet  Google Scholar 

  3. Alvino, A.: On a Sobolev-type inequality. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 20(4), 379–386 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alvino, A., Volpicelli, R., Volzone, B.: On Hardy inequalities with a remainder term. Ric. Mat. 59(2), 265–280 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alvino, A., Ferone, A., Volpicelli, R.: Sharp Hardy inequalities in the half space with trace remainder term. Nonlinear Anal. 75(14), 5466–5472 (2012). doi:10.1016/j.na.2012.04.051

    Article  MathSciNet  MATH  Google Scholar 

  6. Aubin, T.: Problémes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11(4), 573–598 (1976)

    MathSciNet  MATH  Google Scholar 

  7. Barbatis, G., Filippas, S., Tertikas, A.: Series expansion for L p Hardy inequalities. Indiana Univ. Math. J. 52(1), 171–190 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bartsch, T., Weth, T., Willem, M.: A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator. Calc. Var. Partial Differ. Equ. 18(3), 253–268 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brezis, H., Marcus, M.: Hardy’s inequalities revisited. Ann. Scuola Norm. Super. Pisa. Cl. Sci. (4) 25(1–2), 217–237 (1997). 1998

    MathSciNet  MATH  Google Scholar 

  10. Brezis, H., Vazquez, J.L.: Blow-up solutions of some nonlinear elliptic problems. Rev. Mat. Univ. Complut. Madr. 10(2), 443–469 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Brezis, H., Marcus, M., Shafrir, I.: Extremal functions for Hardy’s inequality with weight. J. Funct. Anal. 171(1), 177–191 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cianchi, A., Ferone, A.: Best remainder norms in Sobolev-Hardy inequalities. Indiana Univ. Math. J. 58(3), 1051–1096 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cianchi, A., Ferone, A.: Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Commun. Pure Appl. Anal. 11(3), 1363–1386 (2012). doi:10.3934/cpaa.2012.11.1363

    MathSciNet  Google Scholar 

  14. Dalbeault, J., Esteban, M.J., Loss, M., Vega, L.: An analytical proof of Hardy-like inequalities related to the Dirac operator. J. Funct. Anal. 216(1), 1–21 (2004)

    Article  MathSciNet  Google Scholar 

  15. Davila, J., Dupaigne, L., Montenegro, M.: The extremal solution of a boundary reaction problem. Commun. Pure Appl. Anal. 7(4), 795–817 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Detalla, A., Horiuchi, T., Ando, H.: Missing terms in Hardy-Sobolev inequalities and its application. Far East J. Math. Sci.: FJMS 14(3), 333–359 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Escobar, J.F.: Sharp constant in a Sobolev trace inequality. Indiana Univ. Math. J. 37, 687–698 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Filippas, S., Maz’ya, V.G., Tertikas, A.: On a question of Brezis and Marcus. Calc. Var. Partial Differ. Equ. 25(4), 491–501 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Filippas, S., Maz’ya, V.G., Tertikas, A.: Critical Hardy-Sobolev inequalities. J. Math. Pures Appl. (9) 87(1), 37–56 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Gazzola, F., Grunau, H.C., Mitidieri, E.: Hardy inequalities with optimal constants and remainder terms. Trans. Am. Math. Soc. 356(6), 2149–2168 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ghoussoub, N., Moradifam, A.: On the best possible remaining term in the Hardy inequality. Proc. Natl. Acad. Sci. USA 105(37), 13746–13751 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Giaquinta, M., Hildebrandt, S.: Calculus of Variations. I. The Lagrangian Formalism. Springer, Berlin (1996)

    Google Scholar 

  23. Herbst, I.W.: Spectral theory of the operator (p 2+m 2)1/2Ze 2/r. Commun. Math. Phys. 53(3), 285–2940 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Laptev, A.: A geometrical version of Hardy’s inequality. J. Funct. Anal. 189(2), 539–548 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sagan, H.: Introduction to the Calculus of Variations. Dover, New York (1992)

    Google Scholar 

  26. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tidblom, J.: A Hardy inequality in the half-space. J. Funct. Anal. 221(2), 482–495 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vazquez, J.L., Zuazua, E.: The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential. J. Funct. Anal. 173(1), 103–153 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adele Ferone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Ferone, A. (2013). Kato’s Inequality in the Half Space: An Alternative Proof and Relative Improvements. In: Magnanini, R., Sakaguchi, S., Alvino, A. (eds) Geometric Properties for Parabolic and Elliptic PDE's. Springer INdAM Series, vol 2. Springer, Milano. https://doi.org/10.1007/978-88-470-2841-8_6

Download citation

Publish with us

Policies and ethics