Skip to main content

Existence and Uniqueness of the n-Dimensional Helfrich Flow

  • Chapter
Geometric Properties for Parabolic and Elliptic PDE's

Part of the book series: Springer INdAM Series ((SINDAMS,volume 2))

  • 1871 Accesses

Abstract

The n-dimensional Helfrich variational problem is, roughly speaking, as follows: minimize the integral of squared mean curvature among n-dimensional hypersurfaces with the prescribed area and enclosed volume. In this article the n-dimensional Helfrich flow is considered. This is the L 2-gradient flow associated with the n-dimensional Helfrich variational problem. The equation of the flow is described as a projected gradient flow. A local existence result and partial uniqueness results are presented. In particular the latter improves previous results.

The author partly supported by Grant-in-Aid for Scientific Research (A) (No. 22244010-01), Japan Society for the Promotion Science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: Schmeisser, H.-J., Triebel, H. (eds.) Function Spaces, Differential Operators and Nonlinear Analysis, Friedrichroda, 1992. Teubner-Text Math., vol. 133, pp. 9–126. Trubner, Stuttgart (1993)

    Google Scholar 

  2. Au, T.K.-K., Wan, T.Y.-H.: Analysis on an ODE arisen from studying the shape of a red blood cell. J. Math. Anal. Appl. 282(1), 279–295 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brailsfold, J.D.: Mechnoelastic properties of biological membranes. In: Membrane Fluidity in Biology, vol. 1. Concepts of Membrane Structure, pp. 291–319. Academic Press, San Diego (1983)

    Google Scholar 

  4. Chen, B.-y.: On a variational problem on hypersurfaces. J. Lond. Math. Soc. (2) 6, 321–325 (1973)

    Article  MATH  Google Scholar 

  5. Helfrich, W.: Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch. 28c, 693–703 (1973)

    Google Scholar 

  6. Jenkins, J.T.: Static equilibrium configurations of a model red blood cell. J. Math. Biol. 4, 149–169 (1977)

    Article  MATH  Google Scholar 

  7. Kohsaka, Y., Nagasawa, T.: On the existence for the Helfrich flow and its center manifold near spheres. Differ. Integral Equ. 19(2), 121–142 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Kurihara, T., Nagasawa, T.: On the gradient flow for a shape optimization problem of plane curves as a singular limit. Saitama Math. J. 24, 43–75 (2006/2007)

    MathSciNet  Google Scholar 

  9. Nagasawa, T., Takagi, I.: Bifurcating critical points of bending energy with constraints related to the shape of red blood cells. Calc. Var. Partial Differ. Equ. 16(1), 63–111 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nagasawa, T., Takagi, I.: in preparation

    Google Scholar 

  11. Nagasawa, T., Yi, T.: Local existence and uniqueness for the n-dimensional Helfrich flow as a projected gradient flow. Hokkaido Math. J. 41(2), 209–226 (2012)

    MATH  Google Scholar 

  12. Ou-Yang, Z.-c., Helfrich, W.: Bending energy of vesicle membranes: general expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys. Rev. A 39(10), 5280–5288 (1989)

    Article  Google Scholar 

  13. Peterson, M.A.: An instability of the red blood cell shape. J. Appl. Phys. 57(5), 1739–1742 (1985)

    Article  Google Scholar 

  14. Shikhman, V., Stein, O.: Constrained optimization: projected gradient flows. J. Optim. Theory Appl. 140(1), 117–130 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Watanabe, K.: Plane domains which are spectrally determined. Ann. Glob. Anal. Geom. 18(5), 447–475 (2000)

    Article  MATH  Google Scholar 

  16. Watanabe, K.: Plane domains which are spectrally determined. II. J. Inequal. Appl. 7(1), 25–47 (2002)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks referees for various useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeyuki Nagasawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Nagasawa, T. (2013). Existence and Uniqueness of the n-Dimensional Helfrich Flow. In: Magnanini, R., Sakaguchi, S., Alvino, A. (eds) Geometric Properties for Parabolic and Elliptic PDE's. Springer INdAM Series, vol 2. Springer, Milano. https://doi.org/10.1007/978-88-470-2841-8_15

Download citation

Publish with us

Policies and ethics