Skip to main content

Part of the book series: UNITEXT for Physics ((UNITEXTPH))

  • 1787 Accesses

Abstract

In the previous chapter we introduced the nonrelativistic Hamiltonian of a complex atom and we saw how it can be separated into two parts using the central field approximation: a zero order Hamiltonian whose eigenvectors, in general degenerate, are the states belonging to the different configurations, and a “corrective” Hamiltonian containing various terms including, in particular, the Coulomb repulsion between electrons. By neglecting the interaction between configurations, which is equivalent to consider the corrective Hamiltonian as a perturbation of the zero order Hamiltonian, we have seen, in the particular case of the helium atom, how we can express the energies of the terms by means of integrals which involve single particle eigenfunctions relative to the zero order Hamiltonian. In this chapter we generalise the results obtained for the helium atom to any atom, also using perturbation theory. We will obtain general results that can be directly compared with the spectroscopic data. These results, although approximated, constitute the starting point for the development of more sophisticated treatments that are currently used for the detailed analysis of atomic spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The symbol is introduced in the classic atomic spectroscopy book of Condon and Shortley (1935).

References

  • Condon, E.U., Shortley, G.H.: The Theory of Atomic Spectra. Cambridge University Press, Cambridge (1935)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Landi Degl’Innocenti, E. (2014). Term Energies. In: Atomic Spectroscopy and Radiative Processes. UNITEXT for Physics. Springer, Milano. https://doi.org/10.1007/978-88-470-2808-1_8

Download citation

Publish with us

Policies and ethics